正弦定理教学反思
时间: 07-17
栏目:反思
反思一:正弦定理教学反思
在备课中有两个问题需要精心设计.一个是问题的引入,一个是定理的证明.课本通过一个实际问题引入,但没有深入展开下去;对正弦定理的证明是利用三角形的面积公式导出的,但不够自然.为了处理好这两个问题,我首先确定了一个基本原则,就是充分利用课本素材,从学生的“最近发展区”入手进行设计.具体的思路就是从解决课本的实际问题入手展开,将问题一般化导出三角形中的边角关系——正弦定理.
1.本节课虽然在教师的引导下,完成了教学任务,但是一味地为了完成任务而忽略了对学生正确思维的展开和引导.上好一堂课不仅有好的教学设计,还应有灵活应变的能力,只有从思想上真正转变为以学生的发展为根本,才不会为了进度而将学生强拉进自己事先设计好的轨道.正是教学有法,又无定法.
2.问题是思维的起点,是学生主动探索的动力.本节课通过对课本引例的解决、展开,引导学生在问题解决中发现结论.符合认识问题的思维规律,对激发学生探究问题兴趣是非常有益的.
3.正弦定理的证明方法很多,如利用三角形的面积公式、利用三角形的外接圆、利用向量证明等,本节课将斜三角形的边角关系转化为直角三角形的边角关系导出正弦定理,从学生的“最近发展区”入手去设计问题,思路自然,是学生们易于接受的一种证明方法.但在具体的推导时,要注意尊重学生思维的发展的过程,这是一种理念,也是一种能力.
4.在教学中恰当地利用多媒体技术,是突破教学难点的一个重要手段.本节课利用《几何画板》探究比值的值,由动到静,取得了很好的效果.而课下学生问,∠A是钝角的情形怎么证明呢?于是我将这一问题给学生留作思考题,即“你能否将∠A是钝角的情形转化为锐角的情形呢?”
在教学设计和课堂教学中应充分了解学生、研究学生,备课不仅是备知识,更重要的是备学生.作为教师只有真正树立以学生的发展为本的教学理念,才能尊重学生思维过程的发生、发展,才能从学生的生活经验和已有知识背景出发,创设合理的教学情境,才能为学生提供充分的数学活动和交流的机会,使学生从单纯的知识接受者转变为数学学习的主人.
反思二:正弦定理教学反思
本节是“正弦定理”定理的第一节,设计从直角三角形出发,通过学生的探究活动,引导学生提出问题,通过证明、归纳、应用为线索,把问题展现给学生,从而引入并证明正弦定理。因此,做好“正弦定理”的教学既能复习巩固旧知识,也能让学生掌握新的有用的知识,有效提高学生解决问题的能力。
本节设计注重知识建构过程和学生主题地位的体现,从学生熟悉的直角三角形边角关系,到锐角三角形、钝角三角形的讨论,渗透了分类讨论思想和数形结合思想。
在正弦定理的推导过程中,引导学生采用不同方法证明正弦定理,学生比较容易联想到利用三角函数定义或三角形面积进行论证,使学生不断发现规律,得出在斜三角形中边与角的关系,多种方法的证明有利于学生思维能力的拓展,有助于加强学生解题的灵活度。
由于教学时间的超时,说明教学存在对学生情况的把握不够准确到位,教学过程中时间的分配不够适当,教学语言不够精简,今后一定避免此类问题,争取更大的进步。
反思三:正弦定理教学反思
“正弦定理”既是初中“解直角三角形”内容的直接延拓,也是三角函数一般知识和平面向量知识在三角形中的具体运用,是解可转化为三角形计算问题的其它数学问题及生产、生活实际问题的重要工具,因此具有广泛的应用价值。本节课是“正弦定理”教学的第一节课,其主要任务是引入并证明正弦定理。因此,做好“正弦定理”的教学,不仅能复习巩固旧知识,使学生掌握新的有用的知识,体会联系、发展等辩证观点,而且能培养学生的应用意识和实践操作能力,以及提出问题、解决问题等研究性学习的能力。
教学反思:
本课中,教师立足于所创设的情境,通过学生自主探索、合作交流,亲身经历了提出问题、解决问题、应用反思的过程,学生成为正弦定理的“发现者”和“创造者”,切身感受了创造的苦和乐,知识目标、能力目标、情感目标均得到了较好的落实,为今后的“定理教学”提供了一些有用的借鉴。
本节课更注重对学生非智力冈素的培养,注重情感交流与情感的建立与培养。并在教学过程中自觉遵守以下原则:
(1)顺其自然、真诚相处、平等交流
(2)要依据教师的个人特点采取适当的方法与技巧,注重充分发挥教师的个人格魅力,决非千篇一律的“柔声细语”、“莺歌燕舞”。
(3)借助于信息技术及其它手段,营造一种氛围,一种情境,通过“课前音乐背景”的设置,“课堂上的掌声鼓励”“形体语言与语言艺术”的运用等,力争营造一种愉快、轻松的氛围,创建一个有助于师生,生生思维交流的“情感场”,使数学教学更具有生命力,感染力。使学生在感悟数学的过程中感受数学的魅力,体验数学产生的美感与幸福感。
从整体效果的角度反思:教学时间的超时,是否说明教学存在以上几个方面的问题呢?
反思四:正弦定理教学反思
本节课是正弦、余弦定理教学的第一街课,重点是正弦定理的探究原因如下:教学的目的不仅是传授知识与技能,更主要的是再此过程中,培养学生的能力,特别是思维能力;素材适合于学生教学“观察与分析”,“归纳与猜想”,“实验与证明”等思维能力的训练,正弦定理的探究包含利用向量方法证明定理。缺点是,课堂思维容量大,教学进度受学生的思维水平的影响;教学中容易出现突发事件影响教学进度;故要求教师灵活处理随机事件的能力高,在组织教学中,采取“让学生走上讲台”、“让学生自学课本”、“师生、生生讨论”等模式,形成学生主动观察、分析、归纳、探究、猜想、证明为主线的,教师的主导作用,真正体现了新课改的理念。
教学的注意
对学生情况的把握是否到位,教学设计与学生的生成是否精彩,师生配合度是否默偰,方法是否得当。
学习数学不仅是知识的自我和应用,更主要的是知识的建构和思维能力的培养,体现了知识的探究、建构过程、体现了学生的主体作用。对教材教学适当的处理,分层递进,理解思维方法,从特殊到一般,从归纳猜想到实验证明,培养学生的探究问题的科学方法。
在备课中有两个问题需要精心设计.一个是问题的引入,一个是定理的证明.课本通过一个实际问题引入,但没有深入展开下去;对正弦定理的证明是利用三角形的面积公式导出的,但不够自然.为了处理好这两个问题,我首先确定了一个基本原则,就是充分利用课本素材,从学生的“最近发展区”入手进行设计.具体的思路就是从解决课本的实际问题入手展开,将问题一般化导出三角形中的边角关系——正弦定理.
1.本节课虽然在教师的引导下,完成了教学任务,但是一味地为了完成任务而忽略了对学生正确思维的展开和引导.上好一堂课不仅有好的教学设计,还应有灵活应变的能力,只有从思想上真正转变为以学生的发展为根本,才不会为了进度而将学生强拉进自己事先设计好的轨道.正是教学有法,又无定法.
2.问题是思维的起点,是学生主动探索的动力.本节课通过对课本引例的解决、展开,引导学生在问题解决中发现结论.符合认识问题的思维规律,对激发学生探究问题兴趣是非常有益的.
3.正弦定理的证明方法很多,如利用三角形的面积公式、利用三角形的外接圆、利用向量证明等,本节课将斜三角形的边角关系转化为直角三角形的边角关系导出正弦定理,从学生的“最近发展区”入手去设计问题,思路自然,是学生们易于接受的一种证明方法.但在具体的推导时,要注意尊重学生思维的发展的过程,这是一种理念,也是一种能力.
4.在教学中恰当地利用多媒体技术,是突破教学难点的一个重要手段.本节课利用《几何画板》探究比值的值,由动到静,取得了很好的效果.而课下学生问,∠A是钝角的情形怎么证明呢?于是我将这一问题给学生留作思考题,即“你能否将∠A是钝角的情形转化为锐角的情形呢?”
在教学设计和课堂教学中应充分了解学生、研究学生,备课不仅是备知识,更重要的是备学生.作为教师只有真正树立以学生的发展为本的教学理念,才能尊重学生思维过程的发生、发展,才能从学生的生活经验和已有知识背景出发,创设合理的教学情境,才能为学生提供充分的数学活动和交流的机会,使学生从单纯的知识接受者转变为数学学习的主人.
反思二:正弦定理教学反思
本节是“正弦定理”定理的第一节,设计从直角三角形出发,通过学生的探究活动,引导学生提出问题,通过证明、归纳、应用为线索,把问题展现给学生,从而引入并证明正弦定理。因此,做好“正弦定理”的教学既能复习巩固旧知识,也能让学生掌握新的有用的知识,有效提高学生解决问题的能力。
本节设计注重知识建构过程和学生主题地位的体现,从学生熟悉的直角三角形边角关系,到锐角三角形、钝角三角形的讨论,渗透了分类讨论思想和数形结合思想。
在正弦定理的推导过程中,引导学生采用不同方法证明正弦定理,学生比较容易联想到利用三角函数定义或三角形面积进行论证,使学生不断发现规律,得出在斜三角形中边与角的关系,多种方法的证明有利于学生思维能力的拓展,有助于加强学生解题的灵活度。
由于教学时间的超时,说明教学存在对学生情况的把握不够准确到位,教学过程中时间的分配不够适当,教学语言不够精简,今后一定避免此类问题,争取更大的进步。
反思三:正弦定理教学反思
“正弦定理”既是初中“解直角三角形”内容的直接延拓,也是三角函数一般知识和平面向量知识在三角形中的具体运用,是解可转化为三角形计算问题的其它数学问题及生产、生活实际问题的重要工具,因此具有广泛的应用价值。本节课是“正弦定理”教学的第一节课,其主要任务是引入并证明正弦定理。因此,做好“正弦定理”的教学,不仅能复习巩固旧知识,使学生掌握新的有用的知识,体会联系、发展等辩证观点,而且能培养学生的应用意识和实践操作能力,以及提出问题、解决问题等研究性学习的能力。
教学反思:
本课中,教师立足于所创设的情境,通过学生自主探索、合作交流,亲身经历了提出问题、解决问题、应用反思的过程,学生成为正弦定理的“发现者”和“创造者”,切身感受了创造的苦和乐,知识目标、能力目标、情感目标均得到了较好的落实,为今后的“定理教学”提供了一些有用的借鉴。
本节课更注重对学生非智力冈素的培养,注重情感交流与情感的建立与培养。并在教学过程中自觉遵守以下原则:
(1)顺其自然、真诚相处、平等交流
(2)要依据教师的个人特点采取适当的方法与技巧,注重充分发挥教师的个人格魅力,决非千篇一律的“柔声细语”、“莺歌燕舞”。
(3)借助于信息技术及其它手段,营造一种氛围,一种情境,通过“课前音乐背景”的设置,“课堂上的掌声鼓励”“形体语言与语言艺术”的运用等,力争营造一种愉快、轻松的氛围,创建一个有助于师生,生生思维交流的“情感场”,使数学教学更具有生命力,感染力。使学生在感悟数学的过程中感受数学的魅力,体验数学产生的美感与幸福感。
从整体效果的角度反思:教学时间的超时,是否说明教学存在以上几个方面的问题呢?
反思四:正弦定理教学反思
本节课是正弦、余弦定理教学的第一街课,重点是正弦定理的探究原因如下:教学的目的不仅是传授知识与技能,更主要的是再此过程中,培养学生的能力,特别是思维能力;素材适合于学生教学“观察与分析”,“归纳与猜想”,“实验与证明”等思维能力的训练,正弦定理的探究包含利用向量方法证明定理。缺点是,课堂思维容量大,教学进度受学生的思维水平的影响;教学中容易出现突发事件影响教学进度;故要求教师灵活处理随机事件的能力高,在组织教学中,采取“让学生走上讲台”、“让学生自学课本”、“师生、生生讨论”等模式,形成学生主动观察、分析、归纳、探究、猜想、证明为主线的,教师的主导作用,真正体现了新课改的理念。
教学的注意
对学生情况的把握是否到位,教学设计与学生的生成是否精彩,师生配合度是否默偰,方法是否得当。
学习数学不仅是知识的自我和应用,更主要的是知识的建构和思维能力的培养,体现了知识的探究、建构过程、体现了学生的主体作用。对教材教学适当的处理,分层递进,理解思维方法,从特殊到一般,从归纳猜想到实验证明,培养学生的探究问题的科学方法。