一元二次方程根的判别式教学反思
时间: 08-01
栏目:反思
反思一:一元二次方程根的判别式教学反思
对于一元二次方程根的判别式的三种情况,学生都比较熟悉,但是在运用的过程中暴露出了很多问题:
1、很多同学的计算不过关,方法虽然掌握了,但是在计算△的过程中,总是出错,这对于学生做题的正确率来说非常重要,所以一定要加强部分学生的计算训练,提高计算能力。
2、学生在求字母取值范围这类题目的时候,,特别是二次项系数中含有字母的题目,学生总是忘记考虑对二次项系数的条件限制,从而使得求出的范围不准确。应加强学生这方面的意识。
3、部分学生总是将“求证”的题目与“求字母取值范围”的题目弄混,容易把要求证的结论当成已知来用,对于这部分同学,一定要给他们讲清什么是已知条件,什么是结论,使他们明确完成这两类题目的区别与联系,不再弄错。
反思二:一元二次方程根的判别式教学反思
这节课按照设想完成了。效果如何呢?我布置了如下的几道作业题:
1.关于X的方程2kx2-2x-3k-2=0的两个实根一个小于1,另一个大于1,求实数k的取值范围。
2.已知关于x的方程kx2+1/2kx+k-2=0有两个实根,其中一根在(0,1)之间,另一根在(-1,0)之间,求实数k的取值范围。
3.关于x的方程2x2-3x-3+2m=0的两根均在[-1,1]之间,求m的范围。
4.集合A={(x,y)|y-x2+mx+2},B={(x,y)|x-y+1=0且0≤x≤2},若A∩B≠Ф,求实数m的取值范围。
思考题:
1.关于实系数的一元二次方程x2+ax+bx=0的两实根α,β,证明
(1)如果|α|<2,|β|<2,那么2|a|<4+b且|b|<4;
(2)如果2|a|<b+4且|b|<4,那么|α|<2,|β|<2.
题1和题2和例1中第(1)、(3)题相似,差不多都做对了。第3题与两道例题略有差别,约三分之二的学生做对。第4题需要一定的灵活性才能解决,约三分之一的学生做对。思考题是一道高考题,,题目难度大,是给基础扎实,学有余力的学生做的。个别学生能完成。从整个情况看,作业做得不错,基本上实现了教学目的。我认为,在生源比较好的学校,按照上述要求上课,学生是能够接受的。
我了解我的学生,我相信他们的实力。在整个一节课上,基本上是学生讲为主,我讲为辅。像例2这样较为困难的问题,我也鼓励学生大胆思考,不怕困难,一个人完不成,讲不透,第二个人、第三个人补充,直到完成整个例题。这样上课气氛非常活跃,学生之间常会因为某个观点的不同而争论,作为教师可能比较辛苦。一方面要控制好整节课的节奏,另一方面又要察言观色,适时地对某些观点作出判断,或与学生一同讨论。我想,如果以后再讲到这一段,这节课会有很大的参考价值。<b+4且|b|<4,那么|α|<2,|β|<2.
题1和题2和例1中第(1)、(3)题相似,差不多都做对了。第3题与两道例题略有差别,约三分之二的学生做对。第4题需要一定的灵活性才能解决,约三分之一的学生做对。思考题是一道高考题,,题目难度大,是给基础扎实,学有余力的学生做的。个别学生能完成。从整个情况看,作业做得不错,基本上实现了教学目的。我认为,在生源比较好的学校,按照上述要求上课,学生是能够接受的。我了解我的学生,我相信他们的实力。在整个一节课上,基本上是学生讲为主,我讲为辅。像例2这样较为困难的问题,我也鼓励学生大胆思考,不怕困难,一个人完不成,讲不透,第二个人、第三个人补充,直到完成整个例题。这样上课气氛非常活跃,学生之间常会因为某个观点的不同而争论,作为教师可能比较辛苦。一方面要控制好整节课的节奏,另一方面又要察言观色,适时地对某些观点作出判断,或与学生一同讨论。我想,如果以后再讲到这一段,这节课会有很大的参考价值。
反思三:一元二次方程根的判别式教学反思
通过本节课教学,主要是让学生理解一元二次方程根的判别式,并能用判别式判别根的情况。对于根的判别式,是以前学生从没有接触过的新知识,对学生的吸引力比较大,学生急于弄清根的判别式是一节什么知识,所以学生的好奇心比较大,学习积极性比较高。讲授新课前,我先让学生利用公式法解了三个方程(1)(2)(3),并让学生思考这三个方程的更有什么不同?进而思考方程根的情况于什么有关系?这样既调动了学生学习的积极性,又很自然地进入本课所研究的重点内容。在整个课堂学习中,学生口、脑、手并用,小组讨论交流,整体合作,解决问题,既提高了学生的自学能力,又提高了学生分析问题、解决问题的能力。同时,学生通过自己自学、讨论、合作解决问题,体会到探索的乐趣和成功的欢乐,进一步培养了学生热爱数学的思想。整节课的实施过程很顺利,学生对本课的知识掌握程度不错,能很好地达到本课的教学目的。
在教学过程中,每节课总会有这有那的一些不尽人意的地方,本课也是一样,我还是过多地注重地要求每一位学生都应该掌握哪些知识,尽管在分层练习中设计了不同层次的题目,让优生做有难度的题目,让他们多多思考,提高思含量。对于学习有困难的学生,降低学习要求,努力达到基本要求。但是在课堂内容的呈现过程和内容探索过程中没有注重学生间的交流。其实学生才是学生最好的老师,在他们的交流中,可以硬性要求,先让小组中学习最薄弱的同学发言,再到能力较强的同学发言,这样,即可以使薄弱的同学有一种压力,一定要多思多想。还可以通过组间交流,完善自己的想法。另外,学生的潜力是无穷的,看老师怎么发掘而已,不要太主观地一味过高或过低地估计学生,给学生一个机会,学生会还我们一个奇迹。
反思四:一元二次方程根的判别式教学反思
本学期兄弟学校的数学老师来我校进行课堂教学的交流,很荣幸地是,在这次交流活动中我上了题为《九年级数学——一元二次方程根的判别式》的公开课供大家一起交流探讨。在这次交流探讨中我获益良多,对如何更好地开展本课的有效教学有了更多的体会和认识。
《一元二次方程根的判别式》是九年级上,阅读教材P39页的有关内容,虽然新课程标准没有要,教材上也作为阅读教材,但由于其内容太重要了,因而很有必须把它作为一堂课来上。本课的作用在于让学生能尽快判定一元二次方程根的情况。故本课的教学重点为:会用判别式判定根的情况。并要求让学生学会如何用根的判别式解决实际问题。
课后的分析与思考:
1、本课教学是否真正达到了教学目标。
一堂课的成败好坏,归根到底要看它的教学效果,其教学效果又总是从这样两个方面来检验:①学生是不是越学越爱学,既是否在课堂中充分调动其学习积极性、自觉性和求知欲;②学生是不是越学越会学,既是否培养了他们的能力和习惯,发展了他们的智力和素质。
对于一元二次方程根的判别式的三种情况,学生都比较熟悉,但是在运用的过程中暴露出了很多问题:
1、很多同学的计算不过关,方法虽然掌握了,但是在计算△的过程中,总是出错,这对于学生做题的正确率来说非常重要,所以一定要加强部分学生的计算训练,提高计算能力。
2、学生在求字母取值范围这类题目的时候,,特别是二次项系数中含有字母的题目,学生总是忘记考虑对二次项系数的条件限制,从而使得求出的范围不准确。应加强学生这方面的意识。
3、部分学生总是将“求证”的题目与“求字母取值范围”的题目弄混,容易把要求证的结论当成已知来用,对于这部分同学,一定要给他们讲清什么是已知条件,什么是结论,使他们明确完成这两类题目的区别与联系,不再弄错。
反思二:一元二次方程根的判别式教学反思
这节课按照设想完成了。效果如何呢?我布置了如下的几道作业题:
1.关于X的方程2kx2-2x-3k-2=0的两个实根一个小于1,另一个大于1,求实数k的取值范围。
2.已知关于x的方程kx2+1/2kx+k-2=0有两个实根,其中一根在(0,1)之间,另一根在(-1,0)之间,求实数k的取值范围。
3.关于x的方程2x2-3x-3+2m=0的两根均在[-1,1]之间,求m的范围。
4.集合A={(x,y)|y-x2+mx+2},B={(x,y)|x-y+1=0且0≤x≤2},若A∩B≠Ф,求实数m的取值范围。
思考题:
1.关于实系数的一元二次方程x2+ax+bx=0的两实根α,β,证明
(1)如果|α|<2,|β|<2,那么2|a|<4+b且|b|<4;
(2)如果2|a|<b+4且|b|<4,那么|α|<2,|β|<2.
题1和题2和例1中第(1)、(3)题相似,差不多都做对了。第3题与两道例题略有差别,约三分之二的学生做对。第4题需要一定的灵活性才能解决,约三分之一的学生做对。思考题是一道高考题,,题目难度大,是给基础扎实,学有余力的学生做的。个别学生能完成。从整个情况看,作业做得不错,基本上实现了教学目的。我认为,在生源比较好的学校,按照上述要求上课,学生是能够接受的。
我了解我的学生,我相信他们的实力。在整个一节课上,基本上是学生讲为主,我讲为辅。像例2这样较为困难的问题,我也鼓励学生大胆思考,不怕困难,一个人完不成,讲不透,第二个人、第三个人补充,直到完成整个例题。这样上课气氛非常活跃,学生之间常会因为某个观点的不同而争论,作为教师可能比较辛苦。一方面要控制好整节课的节奏,另一方面又要察言观色,适时地对某些观点作出判断,或与学生一同讨论。我想,如果以后再讲到这一段,这节课会有很大的参考价值。<b+4且|b|<4,那么|α|<2,|β|<2.
题1和题2和例1中第(1)、(3)题相似,差不多都做对了。第3题与两道例题略有差别,约三分之二的学生做对。第4题需要一定的灵活性才能解决,约三分之一的学生做对。思考题是一道高考题,,题目难度大,是给基础扎实,学有余力的学生做的。个别学生能完成。从整个情况看,作业做得不错,基本上实现了教学目的。我认为,在生源比较好的学校,按照上述要求上课,学生是能够接受的。我了解我的学生,我相信他们的实力。在整个一节课上,基本上是学生讲为主,我讲为辅。像例2这样较为困难的问题,我也鼓励学生大胆思考,不怕困难,一个人完不成,讲不透,第二个人、第三个人补充,直到完成整个例题。这样上课气氛非常活跃,学生之间常会因为某个观点的不同而争论,作为教师可能比较辛苦。一方面要控制好整节课的节奏,另一方面又要察言观色,适时地对某些观点作出判断,或与学生一同讨论。我想,如果以后再讲到这一段,这节课会有很大的参考价值。
反思三:一元二次方程根的判别式教学反思
通过本节课教学,主要是让学生理解一元二次方程根的判别式,并能用判别式判别根的情况。对于根的判别式,是以前学生从没有接触过的新知识,对学生的吸引力比较大,学生急于弄清根的判别式是一节什么知识,所以学生的好奇心比较大,学习积极性比较高。讲授新课前,我先让学生利用公式法解了三个方程(1)(2)(3),并让学生思考这三个方程的更有什么不同?进而思考方程根的情况于什么有关系?这样既调动了学生学习的积极性,又很自然地进入本课所研究的重点内容。在整个课堂学习中,学生口、脑、手并用,小组讨论交流,整体合作,解决问题,既提高了学生的自学能力,又提高了学生分析问题、解决问题的能力。同时,学生通过自己自学、讨论、合作解决问题,体会到探索的乐趣和成功的欢乐,进一步培养了学生热爱数学的思想。整节课的实施过程很顺利,学生对本课的知识掌握程度不错,能很好地达到本课的教学目的。
在教学过程中,每节课总会有这有那的一些不尽人意的地方,本课也是一样,我还是过多地注重地要求每一位学生都应该掌握哪些知识,尽管在分层练习中设计了不同层次的题目,让优生做有难度的题目,让他们多多思考,提高思含量。对于学习有困难的学生,降低学习要求,努力达到基本要求。但是在课堂内容的呈现过程和内容探索过程中没有注重学生间的交流。其实学生才是学生最好的老师,在他们的交流中,可以硬性要求,先让小组中学习最薄弱的同学发言,再到能力较强的同学发言,这样,即可以使薄弱的同学有一种压力,一定要多思多想。还可以通过组间交流,完善自己的想法。另外,学生的潜力是无穷的,看老师怎么发掘而已,不要太主观地一味过高或过低地估计学生,给学生一个机会,学生会还我们一个奇迹。
反思四:一元二次方程根的判别式教学反思
本学期兄弟学校的数学老师来我校进行课堂教学的交流,很荣幸地是,在这次交流活动中我上了题为《九年级数学——一元二次方程根的判别式》的公开课供大家一起交流探讨。在这次交流探讨中我获益良多,对如何更好地开展本课的有效教学有了更多的体会和认识。
《一元二次方程根的判别式》是九年级上,阅读教材P39页的有关内容,虽然新课程标准没有要,教材上也作为阅读教材,但由于其内容太重要了,因而很有必须把它作为一堂课来上。本课的作用在于让学生能尽快判定一元二次方程根的情况。故本课的教学重点为:会用判别式判定根的情况。并要求让学生学会如何用根的判别式解决实际问题。
课后的分析与思考:
1、本课教学是否真正达到了教学目标。
一堂课的成败好坏,归根到底要看它的教学效果,其教学效果又总是从这样两个方面来检验:①学生是不是越学越爱学,既是否在课堂中充分调动其学习积极性、自觉性和求知欲;②学生是不是越学越会学,既是否培养了他们的能力和习惯,发展了他们的智力和素质。