圆教学反思
时间: 07-04
栏目:反思
反思一:圆教学反思
1、变教教材为用教材教,教材通过例7,用数方格的方法让学生初步感知圆面积的计算公式,具体过程是这样的:先让学生用数方格的方法数出1/4圆的面积,再推出圆的面积,然后填写表格,通过观察数据,发现圆面积与它的半径的关系,整个过程费时又费力,教学时出示例7的图形,在教师的引领下,让学生估算圆的面积,从而发现圆的面积与半径的关系,省时又省力,为本课重难点的掌握,赢得了时间。在推导出计算公式后,不急于进行例9的教学而让学生做练一练中的题目,在学生掌握了圆面积计算公式后,再学习例9,解决实际问题,符合学生的认知规律。
2、重视动手操作,参与知识的形成过程,当学生探究思维的火花被点燃时,教师巧妙地引导示范、演示,一步步深入挖掘学生的创造性,荷兰数学教育家费赖登塔尔认为:数学学习是一种活动,这种活动与游泳骑自行车一样不经过亲身体验,仅仅看书本听讲解观察他人的演示是学不会的,因此在关键的“化圆为方”环节中,让学生动手操作亲身体验,促使学生的思维由量变到质变,同时操作活动中又巧妙地利用学生的想象把分割过程无限细化,渗透极限思想。
3、数学来源于生活,又应用于生活,喷水器喷水、光盘、羊吃草问题都是学生常见的生活情境,通过把生活中的问题数学化,学生既体验到活用数学知识,解决问题的快乐,也感受到数学的实际应用价值。羊吃草问题,引发了学生对视而不见的生活现象的“数学思考”。同时羊吃草范围的圆,看不见摸不着,需要学生想象力的参与,在练习层次上加深了一步。过早地解决实际问题,不利于学生基本技能的形成。
反思二:圆教学反思
本课是在前面学习了圆的概念和探索了点和圆的位置关系的基础上继续进行圆的有关概念的教学。而数学概念教学并不是单纯地让学生记忆概念,只有让学生去探究知识、发现规律,才能真正的理解概念。因此,在设计本课时,我将着眼点放在了让学生借助图形来直观的体会和发现每个概念所具有的特征,再在学生所发现和体会到的特征的基础上归纳概念。
先来说说本节课中我认为较成功的地方:
1.出示平面上的点与圆,让学生把平面上的点按点与圆的三种位置关系分类,再隐藏圆外和圆内的点,保留圆上的点,连接圆上两点引入弦的概念和直径概念,使学生从上一节课的旧知中很自然的过渡到本节所要学的知识,不会觉得老师在强加概念给他,这是我认为本节课的第一个成功之处。
2.在讲同心圆与等圆的概念时,从树叶落入湖面和奥运五环引入,把数学和生活实际衔接起来,创设了与学生生活环境、知识背景密切相关的情境,放飞了学生的想象的翅膀,让数学贴近生活,使学生感受到数学就在我们的身边,是有用的,有趣的,同时更便于学生理解所学的概念是本节课的另一成功之处。
3.每讲完一个概念,设计相应的练习,让学生对所学的概念加以辨析,对本节中的重要性质,同圆或等圆的半径相等,通过三个由浅入深的例题来加以巩固,使学生能及时的应用所学知识解决问题,既能掌握知识,又能让学生体会解决问题的成功体验是本课的又一成功之处。当然,在教学过程中,还有一些不足之处需要积极改正的:
1.教学组织形式改革。
教学过程中,由于概念较多怕完不成教学任务,虽然很多地方都由学生去发现和体会概念的特征,但这种体会和发现仅让学生从观察中得到。从整体情况来看,我引导地过于细致,使得学生的思考、合作、交流其实都是随着老师的思路在转。我想如果能够采用小组合作学习的形式,让学生去动手画一画,比较画出的图形之间的关系,放手让学生自己去研究圆中的线段和弧,在全班交流的时候,对学生的发现进行有意识地梳理和提升,从而让学生能够形成自已的知识体系,可能这样的教学效果会更好一些。因为这样的学习过程才是充分提升学生自主探索、自主学习能力的过程,这样的学习才是真正让学生成为了学习的主人。
2.从学生原有的知识经验出发。
圆在生活中是非常普遍的,学生对圆也有了一定的认识,如果不上这堂课,多数学生也能知道圆中最长的弦是直径,但是让学生去证明这个结论就有一定的难度了,还涉及到分类讨论的思想,因此在这议一议的环节中,一是给学生思考时间比较少,仍有不少学生只是被动的接受这个证明的思路,二是这个结论在这里证明可能不如放在后面学圆周角时证明好,因为学生刚刚接触圆,认知水平还没有达到这种程度。
3.在例题教学中,注意及时进行方法引导。
本节中的三个例题是对同圆或等圆的半径相等这条性质的应用,让学生根据所学的知识完成后面的几个例题并不是困难的事,但教学并不是让学生会做这些题,而是应让学生体会这一类的问题,该用什么样的方法来解决,让学生学会解决问题的方法,这是教学的重点,在这里没有及时进行方法的总结是本课的遗憾之处。
总之,我们认为教师在实际的课堂教学中,要多创造宽松的教学环境,要充分提供让学生自主学习的空间,让学生真正经历主动探索的学习过程,让学生自已亲身去感受数学,从而获得学习数学的乐趣和成功的体验,我将不断地朝着这个目标努力。
反思三:圆教学反思
从本章节开始,本学期的内容由代数部分内容转化到几何部分。这章节的教学过程中渗透了数学中的转化思想,用割补的方法将要求的图形转化为已知的图形去求解,在求解的过程中还渗透了无限逼近的极限思想,为以后在八九年级时,将直观几何转化为论证几何打下一定的基础。在对公式的推导过程中,本着让学生不仅要知其然,还要知其所以然的想法,先让学生自己动手操作,观察,并得出结论。但因为平时训练少,学生的动手能力感觉相对比较的薄弱。以后在这方面有待加强。其次,在对公式的运用过程中,学生对简单的代公式的题目基本问题不大,但总体看来,容易犯下列这样几种错误。(1)计算时,计算能力偏差,一些差点的学生能约分的总是忘记先约分。计算偏难点更加容易出错。(2)填空题目中总是忘记加单位,应用题有的结果要求保留几位小数,很多学生忘记了。(3)在稍微偏难的应用题当中,学生偷懒,没有运用数形结合的思想,画图然后结合图形去分析题目。所以做题目总是似懂非懂。在这方面应该多加熏陶。(4)在解决图形题目中,当扇形的圆心角大于180度时,如果题目当中没有直接给出圆心角时,学生容易求错圆心角的度数。
本章节涉及的公式和知识点,主要基本上有四个,对他们的概念和运用讲解时,应该结合他们之间的相同点,渗透数学中类比的数学思想去解相应的题目。另外,自己感觉到,作为年轻老师,自己在几何和一些思想方面还有很多提高和学习的地方。要给学生一滴水,自己必须有一桶水。唯有自己不断去学习,才能做到与时俱进,才能教好学生。做一名合格乃至优秀的老师。
反思四:圆教学反思
让学生自学数学书上所呈现的知识结论,会不会客观上造成学生“知其然而不知其所以然”呢?如果学生通过预习已经知道了知识结论,我们的课堂还需要探索些什么?因此,长期以来,“预习”成了数学课的“禁区”。我们都希望上课之前所有的学生都是一张张“白纸”,在课堂上系统地学习数学知识。但是往往事与愿违,每次上课前,总会有不少学生早已通过各种渠道了解了知识内容。换句话说,学生事实的认知起点总会高于逻辑的认知起点。怎么办?我们思考能不能放开手,把“禁区”开放,把预习作为一种有效的数学学习方式?于是,我结合《圆的认识》这一教学内容进行了实践探索,并有了以下几点体会:
1、预习使“双基”得到了有效的落实,提高了课堂教学效率
知识技能的理解和掌握是数学学习是否有效的重要尺度之一。本节课的知识目标是知道圆是平面上的曲线图形,建立圆心、半径和直径的概念,理解半径、直径的特征及相互间的关系;技能目标是会用圆规画圆。从知识目标看,概念的建立是基础。一般认为,数学概念的解释可以通过三类语言:文字语言、图形语言和符号语言。以往,概念教学可以概括为从感性积累到文字提炼的过程。换句话说,学生首先学会用“图形语言”解释,继而抽象成“文字语言”。但是,用精炼的数学语言描述事物的特征,对小学生来说非常困难,因而我们往往要花费大量的教学时间。这堂课,先让学生通过预习了解概念的文字定义,再通过“是”与“非”判断和“画一画”的操作活动完成意义构建,达到了建立概念的目的。正因为如此,画圆技能训练的时间有了保证。技能一定要通过反复的实践操作才能达到熟练的程度。课堂上,我先后两次进行了操作。第一次是任意画,旨在掌握基本的操作方法;第二次是画d=4cm的圆。按要求画圆,也是本堂课的具体目标之一。这样,技能目标就落实到位了。
2、预习有效地促动了课堂探究活动
探究活动能否成功,很大程度上取决于两个因素:一是学生有没有探究的愿望和需要?二是学生是否已经具备了认知基础?本堂课探究的问题是“怎样验证半径、直径的特征以及它们之间的关系”?学生已经比较好地建立了半径、直径及圆心等概念,这就为探究提供了认知基础。再者,在预习过程中,学生同样在思考着这些问题:“半径有多少条?它们的长度相等吗?”“直径有多少条?它们的长度相等吗?”“半径和直径的长度有什么关系?”等等。
1、变教教材为用教材教,教材通过例7,用数方格的方法让学生初步感知圆面积的计算公式,具体过程是这样的:先让学生用数方格的方法数出1/4圆的面积,再推出圆的面积,然后填写表格,通过观察数据,发现圆面积与它的半径的关系,整个过程费时又费力,教学时出示例7的图形,在教师的引领下,让学生估算圆的面积,从而发现圆的面积与半径的关系,省时又省力,为本课重难点的掌握,赢得了时间。在推导出计算公式后,不急于进行例9的教学而让学生做练一练中的题目,在学生掌握了圆面积计算公式后,再学习例9,解决实际问题,符合学生的认知规律。
2、重视动手操作,参与知识的形成过程,当学生探究思维的火花被点燃时,教师巧妙地引导示范、演示,一步步深入挖掘学生的创造性,荷兰数学教育家费赖登塔尔认为:数学学习是一种活动,这种活动与游泳骑自行车一样不经过亲身体验,仅仅看书本听讲解观察他人的演示是学不会的,因此在关键的“化圆为方”环节中,让学生动手操作亲身体验,促使学生的思维由量变到质变,同时操作活动中又巧妙地利用学生的想象把分割过程无限细化,渗透极限思想。
3、数学来源于生活,又应用于生活,喷水器喷水、光盘、羊吃草问题都是学生常见的生活情境,通过把生活中的问题数学化,学生既体验到活用数学知识,解决问题的快乐,也感受到数学的实际应用价值。羊吃草问题,引发了学生对视而不见的生活现象的“数学思考”。同时羊吃草范围的圆,看不见摸不着,需要学生想象力的参与,在练习层次上加深了一步。过早地解决实际问题,不利于学生基本技能的形成。
反思二:圆教学反思
本课是在前面学习了圆的概念和探索了点和圆的位置关系的基础上继续进行圆的有关概念的教学。而数学概念教学并不是单纯地让学生记忆概念,只有让学生去探究知识、发现规律,才能真正的理解概念。因此,在设计本课时,我将着眼点放在了让学生借助图形来直观的体会和发现每个概念所具有的特征,再在学生所发现和体会到的特征的基础上归纳概念。
先来说说本节课中我认为较成功的地方:
1.出示平面上的点与圆,让学生把平面上的点按点与圆的三种位置关系分类,再隐藏圆外和圆内的点,保留圆上的点,连接圆上两点引入弦的概念和直径概念,使学生从上一节课的旧知中很自然的过渡到本节所要学的知识,不会觉得老师在强加概念给他,这是我认为本节课的第一个成功之处。
2.在讲同心圆与等圆的概念时,从树叶落入湖面和奥运五环引入,把数学和生活实际衔接起来,创设了与学生生活环境、知识背景密切相关的情境,放飞了学生的想象的翅膀,让数学贴近生活,使学生感受到数学就在我们的身边,是有用的,有趣的,同时更便于学生理解所学的概念是本节课的另一成功之处。
3.每讲完一个概念,设计相应的练习,让学生对所学的概念加以辨析,对本节中的重要性质,同圆或等圆的半径相等,通过三个由浅入深的例题来加以巩固,使学生能及时的应用所学知识解决问题,既能掌握知识,又能让学生体会解决问题的成功体验是本课的又一成功之处。当然,在教学过程中,还有一些不足之处需要积极改正的:
1.教学组织形式改革。
教学过程中,由于概念较多怕完不成教学任务,虽然很多地方都由学生去发现和体会概念的特征,但这种体会和发现仅让学生从观察中得到。从整体情况来看,我引导地过于细致,使得学生的思考、合作、交流其实都是随着老师的思路在转。我想如果能够采用小组合作学习的形式,让学生去动手画一画,比较画出的图形之间的关系,放手让学生自己去研究圆中的线段和弧,在全班交流的时候,对学生的发现进行有意识地梳理和提升,从而让学生能够形成自已的知识体系,可能这样的教学效果会更好一些。因为这样的学习过程才是充分提升学生自主探索、自主学习能力的过程,这样的学习才是真正让学生成为了学习的主人。
2.从学生原有的知识经验出发。
圆在生活中是非常普遍的,学生对圆也有了一定的认识,如果不上这堂课,多数学生也能知道圆中最长的弦是直径,但是让学生去证明这个结论就有一定的难度了,还涉及到分类讨论的思想,因此在这议一议的环节中,一是给学生思考时间比较少,仍有不少学生只是被动的接受这个证明的思路,二是这个结论在这里证明可能不如放在后面学圆周角时证明好,因为学生刚刚接触圆,认知水平还没有达到这种程度。
3.在例题教学中,注意及时进行方法引导。
本节中的三个例题是对同圆或等圆的半径相等这条性质的应用,让学生根据所学的知识完成后面的几个例题并不是困难的事,但教学并不是让学生会做这些题,而是应让学生体会这一类的问题,该用什么样的方法来解决,让学生学会解决问题的方法,这是教学的重点,在这里没有及时进行方法的总结是本课的遗憾之处。
总之,我们认为教师在实际的课堂教学中,要多创造宽松的教学环境,要充分提供让学生自主学习的空间,让学生真正经历主动探索的学习过程,让学生自已亲身去感受数学,从而获得学习数学的乐趣和成功的体验,我将不断地朝着这个目标努力。
反思三:圆教学反思
从本章节开始,本学期的内容由代数部分内容转化到几何部分。这章节的教学过程中渗透了数学中的转化思想,用割补的方法将要求的图形转化为已知的图形去求解,在求解的过程中还渗透了无限逼近的极限思想,为以后在八九年级时,将直观几何转化为论证几何打下一定的基础。在对公式的推导过程中,本着让学生不仅要知其然,还要知其所以然的想法,先让学生自己动手操作,观察,并得出结论。但因为平时训练少,学生的动手能力感觉相对比较的薄弱。以后在这方面有待加强。其次,在对公式的运用过程中,学生对简单的代公式的题目基本问题不大,但总体看来,容易犯下列这样几种错误。(1)计算时,计算能力偏差,一些差点的学生能约分的总是忘记先约分。计算偏难点更加容易出错。(2)填空题目中总是忘记加单位,应用题有的结果要求保留几位小数,很多学生忘记了。(3)在稍微偏难的应用题当中,学生偷懒,没有运用数形结合的思想,画图然后结合图形去分析题目。所以做题目总是似懂非懂。在这方面应该多加熏陶。(4)在解决图形题目中,当扇形的圆心角大于180度时,如果题目当中没有直接给出圆心角时,学生容易求错圆心角的度数。
本章节涉及的公式和知识点,主要基本上有四个,对他们的概念和运用讲解时,应该结合他们之间的相同点,渗透数学中类比的数学思想去解相应的题目。另外,自己感觉到,作为年轻老师,自己在几何和一些思想方面还有很多提高和学习的地方。要给学生一滴水,自己必须有一桶水。唯有自己不断去学习,才能做到与时俱进,才能教好学生。做一名合格乃至优秀的老师。
反思四:圆教学反思
让学生自学数学书上所呈现的知识结论,会不会客观上造成学生“知其然而不知其所以然”呢?如果学生通过预习已经知道了知识结论,我们的课堂还需要探索些什么?因此,长期以来,“预习”成了数学课的“禁区”。我们都希望上课之前所有的学生都是一张张“白纸”,在课堂上系统地学习数学知识。但是往往事与愿违,每次上课前,总会有不少学生早已通过各种渠道了解了知识内容。换句话说,学生事实的认知起点总会高于逻辑的认知起点。怎么办?我们思考能不能放开手,把“禁区”开放,把预习作为一种有效的数学学习方式?于是,我结合《圆的认识》这一教学内容进行了实践探索,并有了以下几点体会:
1、预习使“双基”得到了有效的落实,提高了课堂教学效率
知识技能的理解和掌握是数学学习是否有效的重要尺度之一。本节课的知识目标是知道圆是平面上的曲线图形,建立圆心、半径和直径的概念,理解半径、直径的特征及相互间的关系;技能目标是会用圆规画圆。从知识目标看,概念的建立是基础。一般认为,数学概念的解释可以通过三类语言:文字语言、图形语言和符号语言。以往,概念教学可以概括为从感性积累到文字提炼的过程。换句话说,学生首先学会用“图形语言”解释,继而抽象成“文字语言”。但是,用精炼的数学语言描述事物的特征,对小学生来说非常困难,因而我们往往要花费大量的教学时间。这堂课,先让学生通过预习了解概念的文字定义,再通过“是”与“非”判断和“画一画”的操作活动完成意义构建,达到了建立概念的目的。正因为如此,画圆技能训练的时间有了保证。技能一定要通过反复的实践操作才能达到熟练的程度。课堂上,我先后两次进行了操作。第一次是任意画,旨在掌握基本的操作方法;第二次是画d=4cm的圆。按要求画圆,也是本堂课的具体目标之一。这样,技能目标就落实到位了。
2、预习有效地促动了课堂探究活动
探究活动能否成功,很大程度上取决于两个因素:一是学生有没有探究的愿望和需要?二是学生是否已经具备了认知基础?本堂课探究的问题是“怎样验证半径、直径的特征以及它们之间的关系”?学生已经比较好地建立了半径、直径及圆心等概念,这就为探究提供了认知基础。再者,在预习过程中,学生同样在思考着这些问题:“半径有多少条?它们的长度相等吗?”“直径有多少条?它们的长度相等吗?”“半径和直径的长度有什么关系?”等等。