范文
菜单

2、5、3的倍数的特征教学反思

时间: 03-03 栏目:反思
2、5、3的倍数的特征教学反思一:

    这部分内容是在因数和倍数的基础上进行教学的,是求最大公因数最小公倍数的重要基础,从而也是学习约分和通分的必要前提。学生的分数运算是否熟练,取决于约分和通分掌握的是否熟练,而约分和通分是否熟练,在很大程度上取决于能不能很快地根据分子分母的特征看出有什么公因数,能不能很快地求出几个分数的分母的公倍数。因此,熟练掌握2,3,5的倍数特征,具有十分重要的意义。  
    “2、5”的倍数的特征规律比较明显,教学轻松。3的倍数特征,学生较难发现规律,且受“2、5倍数的特征”影响往往也从个位上寻找,(比如,个位上是3,6,9的),但经过观察,发现这些数的个位上的数有的是3的倍数,有的不是,于是产生认知冲突。接下来,经过进一步提示,引导学生观察各位上数的和,发现各位上的和是3的倍数。于是,形成新的猜想:一个数如果是3的倍数,那么它各位上数的和也是3的倍数。  
    为了验证这一猜想,我补充了一些其他的数,如49×3=147,166×3=498等,使学生进一步确认这一结论的正确性。还可以任意写一个数,利用这一结论来验证,如3697,3+6+9+7=25,25不是3的倍数,而3697÷3也不能得到整数商,因此,它不是3的倍数。通过这样的方式也使学生认识到:找出某个规律后,还要找出一些正面的、反面的例子进行检验,看是不是普遍适用。   
    为了使学生更好地掌握3的倍数的特征,进行课堂练习时,我还把一些数各个数位上的数经过不同的排列,再让学生判断,以加深对“各位上数的和是3的倍数”的理解。如完成“做一做”第1题时,学生判断完45是3的倍数后,教师可以再让学生判断一下54是不是3的倍数。  
    利用2、5、3的倍数的特征来判断一个数是不是2、5或3的倍数,其方法是比较容易掌握的,但要形成较好的数感,达到熟练判断的程度,也不是一、两节课所能解决的,还需要进行较多的练习进行巩固。  
    我感到自主学习和合作探究是这节课中最重要的两种学习方式,学生通过自主选择研究内容,举例验证等独立思考和小组讨论,相互质疑等合作探究活动,获得了数学知识。学生的学习能动性和潜在能力得到了激发。在自主探索的过程中,学生体验到了学习成功的愉悦,同时也促进了自身的发展。 


2、5、3的倍数的特征教学反思二:

    2、5的倍数特征有共同之处,既都要关注个位上的数字。我在教学2的倍数特征时下功夫较多,由找倍数——观察特征——验证发现——得出结论,每一环节都使学生明确活动目的,找到学习方法。再到5的倍数特征时,何不由扶到放,充分发挥学生的自主能力性呢?因此,我完全放手,给学生以充分的时间和空间,让他们在观察、探索中体验成功的喜悦。
    在教学既是2又是5的倍数的特征时,我没有让学生通过做课本上的习题总结结论,而是通过让学生说自己的学号,谁是2的倍数,谁是5的倍数,然后自然的追问一句:“为什么有的同学举了两次手?”全体学生幡然醒悟,原来这几个同学的学号既是2,又是5的倍数,很自然的找到了既是2又是5的倍数的特征,我感觉这一个环节的设计非常自然,贴近学生实际。这是我认为比较成功的地方。
    不足之处:
    1. 营造民主、宽松的学习氛围不够。
    课堂气氛在很大程度上影响着学生学习过程中创造性的发挥。这节课一开始教师营造气氛不很到位。后来气氛有所缓和。
    2 .总怕学生在这节课里不能很好的接受知识,所以在个别应放手的地方却还在牵着学生走。总结性的语言也显得有些罗嗦。   
        3 .本节课在教学评价方式上略显单一。对学生的评价少,激励性的语言不够。


2、5、3的倍数的特征教学反思三:

    2、5、3的倍数特征是分为两节课完成的,上完后,给我最大的感受,学生对2、5的倍数的特征不难理解,对偶数和奇数的概念也容易掌握,2、5的倍数的特征这节课,概念比较多,学生很容易混淆。怎样才能把抽象的概念转化为形象直观的知识让学生们接受呢?
    一、互动、质疑,激发学生的探究兴趣。
    好的开始等于成功了一半。课伊始,我便说:“老师不用计算,就能很快判断一个数是不是2或5的倍数,你们相信吗?”学生自然不相信,争先恐后地来考老师,结果不得而知。几轮过后,看到他们还是不服气的样子,我故作神秘说:“其实,是老师知道一个秘诀。你们想知道是什么吗?”由此引出课题。这样大大的调动了学生学习的积极性,激发了其探究的欲望。
    二、鼓励学生独立思考,经历猜测验证的过程。
    数学学习过程中充满了观察、实验、推断等探索性与挑战性活动。由于5的倍数的特征比较容易发现,我便把它调到2的倍数的特征前面来进行教学。首先让学生独立写出100以内5的倍数,独立观察,看看你有什么发现?学生很容易发现“个位上是0或5的数是5 的倍数。”而这只是猜测,结论还需要进一步的验证。我们不能满足于学生能够得到结论就够了,而应该抱着科学严谨的态度,引导学生认识到这个结论仅仅适用于1—100这个小范围。是不是在所有不等于0的自然数中都适用呢?还需要研究。在老师的引导下,学生开始认识到还要继续拓展范围,研究大于100的自然数中所有5的倍数是不是也是个位上的数字是5或0。在这一过程中,学生感受到了科学严谨的态度,知道了在进行一项数目巨大的研究过程中,可以从小范围入手,得到一定的猜想,然后逐渐扩范围大,最后得出科学的结论。这样,当下节课研究3的倍数的特征时,学生就会大胆猜想,并有方法来验证自己的猜想了。
    三、小组合作,发挥团体的作用
    动手实践、合作交流是学生学习数学的重要方式。与5的倍数特征相比较,2的倍数特征稍显困难,所以我组织学生利用小组合作的方式,根据探究5的倍数的特征的思路,小组合作探究2的倍数的特征。经过这样的合作讨论,大多数小组能够得到正确或接近正确的答案。突出了学生的主体地位,让他们在充分的探索活动中充分发现规律、举例验证、总结归纳。


2、5、3的倍数的特征教学反思四:

    课上完了,整体来说感觉良好。学生的主体作用在这节课中得到了充分的发挥,积极的思维、热烈的气氛等均给人以很大的感染,仔细分析,我认为这节课课的成功得益于以下几方面:
    1.  2.3.5倍数的特征,它们在知识体系中是一个整体,而在特征和判断方法上有各自不同,这使得学生的学习过程始终处在“产生冲突——解决冲突”的过程中,为学生的积极探索提供了较大的空间,也为每个学生在不同水平上参与学习提供了可能。例如,在探索能被3整除的数的特征时,有的学生提出“个位上是3的倍数”有的学生提出“某一位上的数是3的倍数”;而水平较高的学生提出:“各个数位上的数字之和是3的倍数”。在这样一个探索过程中学生的主动性和创造性得到了发挥。这是我认为比较成功的地方。
为你推荐