范文
菜单

正多边形与圆教学反思

时间: 07-17 栏目:反思
反思一:正多边形与圆教学反思

这一节主要学习了正多边形与圆,正多边形和圆关系密切,主要正多边形的有关概念,正多边形的有关计算,以及正多边形的有关画法等。

课前先让学生预习学案,对于课本上正五边形的证明结合图形,明确了证明思路,然后让学生明确,这个结论对于任意的正多边形都成立。再一个通过了解正多边形的有关概念,让学生会求一些量,比如给你一个正多边形,已知它的边长、周长、半径、边心距、面积中的任意一项,都可以熟练求出其他各项。

这节课大部分学生掌握还好,但对于基础差的学生来说,只是背过了一些概念,运用解题时有些吃力,针对这种情况,学案设计了一些简单的适合他们的题,让他们从做题中得到一些成就感,培养对数学的兴趣。另外小组分工合作讨论,但是不够积极,只有少部分学生能做到,以后应多加训练。

总之,这节课也有很多好的地方,也存在很多不足,以后应积极查漏补缺,使之尽善尽美。


反思二:正多边形与圆教学反思

昨天在学校上了《正多边形与圆》一节,在前一节课,我花了十分钟的时间已经让学生通过看书感知了中心、中心角、半径、边心距的定义,这节的教学重点是特殊的正多边形和圆中边心距、边长、半径的关系。
    
我先给了学生五分钟看书上正六边形的例题,在黑板上画了半径为R的正四边形、正六边形、正三角形及其外接圆,点拨例题后我以表格的形式给出学生的第一个问题是:分别用R表示正四边形、正六边形、正三角形的边长、周长、边心距和面积。以前一直习惯于我讲学生听,这节我试着让学生讲,学生在黑边前的讲解的时候我发现其他学生听的更认真,虽然讲解的学生还存在着声音小、讲解不是太透彻等缺点,但整体还可以,多给学生机会肯定会有提高。整节课我围绕这个问题花了很长的时间,目的是让更多的学生体会并且学会这种构造直角三角形的思想。其中我给学生补充的知识有:有一个角是30度的直角三角形的三边比和等腰直角三角形的三边比的推导及结论,我觉得这样可以为学生的运算节省时间。
    
这节课的第二个问题是:探究正三角形的外接圆半径R和内切圆的半径r的数量关系,以及它们与正三角形的高之间的数量关系。在这个过程由两个同学去讲解,田礼厚同学通过连接半径转化R构造直角三角形,而郑文豪同学通过构造弦心距转化r构造直角三角形,同样都是转化,但转化的不一样,我觉得学生的思维表现的很活跃。
    
整节课设计的问题较少,重点在于让学生体会构造思想和转化思想,学生表现很积极,但是没有练习以及反馈的时间,在接下来的练习课上我觉得困扰学生的不是构造直角三角形的思想而是计算的速度及准确性,但快速准确运算又不是一天两天的功夫,我认为对于我的学生而言,每节课还得给适当的运算来锻炼学生。


反思三:正多边形与圆教学反思

《正多边形与圆》这一节的教学目标是:让学生能将正多边形的有关计算问题转化为解直角三角形的问题来解决;会用量角器或尺规等分圆、画出正多边形。通过学习使学生能认识到事物之间是普遍联系的,事物之间是可以相互转化的,并培养和训练学生的综合运用知识能力和解决实际问题的能力,渗透数形结合的思想和方法。

1、本节新概念较多,对概念的教学要注意从“形”的角度去认识和辨析,但对概念的严格定义不能要求过高.在概念教学中,要重视运用启发式教学,让学生从“形”的特征获得对几何概念的直观认识,鼓励学生用自己的语言表述有关概念,再进一步准确理解有关概念的文字表述,促进学生主动学习.所以在教学的过程中我尽量使用多媒体教学手段。通过形象生动的直观图形,给学生营造一个问题情景,通过问题的探索来调动学生的内在动力,提高学习积极性,提高探索知识的能力。对于正多边形的画法,我直接给出一个问题:同学们会画五角星吗?怎样画的,能归结一下你的画图步骤吗?图形都会画,通过学生间的交流,探索,合作,他们自己可以解决这个问题,进一步可以得出画n边形的方法。这样层层深入,学生自己懂的不再去讲,自己能领悟的不再去分析,培养学生获取知识的能力。

2、正多边形是指各边相等、各角也相等的多边形,其边数是大于或等于3的正整数.要从边和角两类元素的数量特征来正确把握正多边形的定义;除三角形以外,多边形的各边相等与各角相等这两者之间没有等价性,为了加深认识,可以适当举一些反例加以说明.

3、“问题1”是引导学生讨论正多边形的轴对称性.教学时,可根据课本先对边数为3、5、7的正多边形以及边数为4、6、8的正多形的轴对称性分别进行讨论;再结合“试一试”中提出的要求,对“问题1”前面的讨论进行归纳、总结.要使学生确认所有正多边形都是轴对称图形,并知道正多边形的对称轴条数(与边数相同)及分布特点.

4、“问题2”是引导学生讨论正多边形中心对称性,教学时可类比“问题1”的讨论展开.要对中心对称图形的有关知识进行复习,以便学生理解边数是奇数的正多边形为什么不是中心对称图形.

5、“想一想”是要让学生知道,任何一个正多边形都具有旋转对称性,一个正n多边形绕着它的中心每旋转 ,总与原图形重合.


反思四:正多边形与圆教学反思

《正多边形与圆》这一章的教学目标是:让学生能将正多边形的有关计算问题转化为解直角三角形的问题来解决;能利用圆的相关公式来解决一些简单得计算问题;了解圆柱、圆锥的侧面展开图是矩形和扇形,会计算它的侧面积和表面积。通过学习使学生能认识到事物之间是普遍联系的,事物之间是可以相互转化的,并培养和训练学生的综合运用知识能力和解决实际问题的能力,渗透数形结合的思想和方法。
       
由于这一单元知识概念较多易混淆,所以在教学的过程中我尽量使用多媒体教学手段。“正多边形与圆”:通过形象生动的直观图形,给学生营造一个问题情景,通过问题的探索来调动学生的内在动力,提高学习积极性,提高探索知识的能力。对于正多边形的画法,我直接给出一个问题:同学们会画五角星吗?怎样画的,能归结一下你的画图步骤吗?图形都会画,通过学生间的交流,探索,合作,他们自己可以解决这个问题,进一步可以得出画n边形的方法。这样层层深入,学生自己懂的不再去讲,自己能领悟的不再去分析,培养学生获取知识的能力。“探究活动:镶嵌”这是一种新的学习方式,它不是老师讲,学生听的学习方式,而是学生自己运用已有的数学知识和能力,去探究生活中有趣并富有挑战性的问题的活动过程,我利用多媒体课件,将抽象问题形象化,并设计分层讨论的问题,让学生在探索和解决镶嵌问题的过程中,感受数学知识的价值,增强应用数学知识的意识,获得各种体验:数学来源于生活;利用数学知识可以解决生活中的实际问题。也培养了学生将生活中的实际问题抽象成数学问题,并利用有关的数学知识来解决问题的能力。
      
“圆周长、弧长”这一节中的“圆周长”是同学们比较熟悉的内容,而“弧长”虽然比较陌生但是圆周长是它的基础,所以我先设计了一个问题(这个问题实际上就是书上的例题该编的):假如用一根很长很长的钢丝沿赤道绕地球一圈后,再把钢丝放长10米,此时的钢丝与地球之间的缝隙可以让一头牛通过,还是可以让一只老鼠通过?同学们很感兴趣,并都说一只蚂蚁通过都危险,还能让一只牛通过吗?带着问题让学生自己去计算、去验证,结果大吃一惊,让一头牛通过还绰绰有余。用此问题来帮助学生熟悉以前圆周长的知识,也为弧长计算公式的推导作铺垫。第二个问题是:将一个圆进行四等分,你能求出每一段弧长吗?任意两点间的弧长呢?还需要什么条件吗?让学生自己去交流、探索并自己得出了结论:弧长的计算公式与圆的半径和弧所对圆心角有关。这教给了学生一种思维方式:从特殊到一般的思维方式。 “圆、扇形、弓形的面积”这一部分知识与上面的知识类似,仍是特殊到一般的思维方式,也揭示了局部与整体关系,可以对比着学习。
         
“圆柱、圆锥的侧面展开图”这部分知识初步培养了学生用平面图形空间变换的方法观察几何体,从而发展学生的空间想象能力以及把空间图形的有关计算转化为平面图形的计算能力。所以我自制教具进行演示,引导学生发现圆柱和圆锥的展开图就是我们熟悉的矩形和扇形,从而教会他们一种重要的数学思想——转化。通过调动学生耳听、口说、眼看、动脑、动手等感官功能来激发学生主动参与学习活动,提高学习兴趣。
       
实践证明学生主体作用发挥的越好,学习积极性高,由自己操作的来得知识内化率高,保持的时间长久,知识运用的能力就越强,教学就能收到事半功倍的效果。在教学过程中还要提高学生自主学习的能力;对信息的接受和获取能力和主动参与、乐于探究、勤于动手的好习惯。
为你推荐