直角三角形全等的判定教学反思
时间: 07-17
栏目:反思
反思一:直角三角形全等的判定教学反思
一、取得的效果:
一开始我分配给不同的组的学生给定不同的直角边和斜边动手画直角三角形,然后让同组的学生把自己画出的图剪下来跟别的同学生比较,让他们把发现的结果口述出来。再把不同组的三角形作个对比,让他们把发现的情况说出来。然后通过提出问题,为什么不同组的三角形不管是大小还是形状都不一样,而同组的却又一样。让学生讨论明白也即是只要有一条直角边一样,斜边也一样这样的三角形画出来的结果是能够完全互相重合的。从而引入了“HL”定理。从授课过程中学生的参与热情很高,这样做一是可以让学生探究在给定了一条直角边和斜边以后,怎样把一个三角形画出来,强化了他们的动手能力同时也增强了他们的团结合作能力,二是可以让他们经历了知识的从感性认识到理性认识这么个过程。
二、存在如下的不足:
从学生作业反馈的情况来看,主要存在以下的问题:一是学生在证明直角三角形全等时,个别学生出现了以角代边的现象,也即是用一对直角相等加一对斜边相等来代替了“HL”。二是不少的学生利用所学的知识来解决简单的问题能力欠缺。这同时也说明了,在上课过程中存在了这或那的不足,如分组讨论时,可能有些学生不是在讨论问题,而是在聊天或者是做其他的事。或者是我在讲解时讲得不够透要么对于学困生的关注不够,以致学生对于定理的理解不够清楚。
三、解决方法
1.课后多布置专题练习,针对不同类型的学生布置不同的作业。
2、在上课过程中多关注学困生。
3、课后多与学生交流,以了解他们的接受程度以便改进自己的授课速度,适当调整知识拓展的难易度。
反思二:直角三角形全等的判定教学反思
由于直角三角形是特殊的三角形,因而它具备一般三角形所没有的特殊性质。通过本节课的学习,要求理解已经学过的判定全等三角形的四种方法均可以用来判定两个直角三角形全等,同时通过探索得出“有斜边和一条直角边对应相等的两个直角三角形全等” 这一重要而又特殊的判定方法,并能熟练地利用这些方法判定两个直角三角形全等。在研究的过程中,注意渗透由一般到特殊的数学思想方法。为了实现教学目标,本节课改变了教材的情境设置,择取了一个更便于学生理解、更能激发学生兴趣的实例――集装箱的装运,使学生能在生活中找到数学原型,在思考中找到解决问题的办法。教学中鼓励学生大胆猜想,大胆辩驳,教师始终是一位引导者、组织者,学生的积极性得到充分发挥,取得了很好的教育效果。
本节课的教学设计有两大鲜明特色:一是重视组织和开发课程资源,关注和利用学生身边熟悉的材料,如集装箱、滑梯等,以学生已有的生活经验和感受为出发点,由课内延伸到课外,由学校走向社会,让学生切实感受到生活中处处有数学。二是注重学生在学习过程中的自主体验。教学过程中教师给学生留出了充分的活动时间和想像空间,鼓励每位学生动手、动口、动脑,积极参与到活动和实践中来。教学中将操作实验、自主探索、大胆猜测、合作交流、积极思考等学习方式贯穿数学学习的始终,促进学生形成主动学习的愿望和积极参与的意识,最终使教学的过程成了师生激情与智慧共生的过程。
在本节课的整个活动过程中,突出了标准的基本理念。从内容方面看,情境内容、议练内容都很贴近学生生活,问题串的难易程度合理,体现了基础性、普及性和实用性。从形式方面看,有学生的观察感受、有学生的独立思考,有生生的合作交流,有师生的合作小结,体现了普及性、平等性、合作性。从环节方面看,分层次的变式训练强化了知识及其应用的多样性,遵循了学生认知的自然规律,同时也把问题上升到多角度分析、灵活处理、恰当选择的数学思维高度,从而体现了数学课程的发展性。
反思三:直角三角形全等的判定教学反思
本节课教学,主要是让学生在回顾全等三角形判定的基础上,进一步研究特殊的三角形全等的判定的方法,让学生充分认识特殊与一般的关系,加深他们对公理的多层次的理解。在教学过程中,让学生充分体验到实验、观察、比较、猜想、归纳、验证的数学方法,一步步培养他们的逻辑推理能力。新课程标准强调“从具体的情景或前提出发进行合情推理,从单纯的几何推理价值转向更全面的几何的教育价值”,为了体现这一理念,我设计了几个不同的情景,让学生在不同的情景中探求新知,用直接感受去理解和把握空间关系。这一设计,极大的激发了他们的学习欲望,加深了师生互动的力度,课堂效益比较明显。不同的情景又以不同的层次逐步提升既有以知识为背景的情景,又有以探索、验证为主的情景,从不同的方面,让不同层次的学生都有所收获,体现了“大众数学”的主旋律,也是“不同的人学习不同的数学”的新课程理念的体现。
《标准》明确提出“通过对基本图形的基本性质必要的证明,使学生体会证明的必要性,理解证明的基本过程,掌握用综合法证明的格式,初步感受公理化的思想”,为体现这一目标,在“情景二”探索“HL公理”中,要求学生用文字语言、图形语言、符号语言来表达自己的所思所想,强调从情景中获得数学感悟,注重让学生经历观察、操作、推理的过程。
数学教学应努力体现“从问题情景出发,建立模型、寻求结论、解决问题”,在“情景三”中,我通过三角板的拼图,让学生从这一过程抽象出几何图形,建立模型,研究具体问题,起到了较好的作用,学生也体会到数学与现实的联系,以及学习处理此类问题的方法。作为九年级的学生,他们的抽象思维已有一定程度的发展,具有初步的推理能力,因此,教学中,我除了注重情景的运用外,更多的运用符号语言,在比较抽象的水平上,提出数学问题,加深和扩展了学生对数学的理解。纵观整个教学,不足主要体现在提出的一些问题,启发性、激趣性不足,导致学生的学习兴趣不易集中,课堂气氛不能很快达到高潮,延误了学生学习的最佳时机;在学生的自主探究与合作交流中,时机控制不好,导致部分学生不能有所收获;在评价学生表现时,不够及时,没有让他们获得成功的体验,丧失激起学生继续学习的很多机会。
总之,我们在教学中一定要考虑我们的对象,要为他们服务,为他们设想,这样才能够获得最佳教学效果。
一、取得的效果:
一开始我分配给不同的组的学生给定不同的直角边和斜边动手画直角三角形,然后让同组的学生把自己画出的图剪下来跟别的同学生比较,让他们把发现的结果口述出来。再把不同组的三角形作个对比,让他们把发现的情况说出来。然后通过提出问题,为什么不同组的三角形不管是大小还是形状都不一样,而同组的却又一样。让学生讨论明白也即是只要有一条直角边一样,斜边也一样这样的三角形画出来的结果是能够完全互相重合的。从而引入了“HL”定理。从授课过程中学生的参与热情很高,这样做一是可以让学生探究在给定了一条直角边和斜边以后,怎样把一个三角形画出来,强化了他们的动手能力同时也增强了他们的团结合作能力,二是可以让他们经历了知识的从感性认识到理性认识这么个过程。
二、存在如下的不足:
从学生作业反馈的情况来看,主要存在以下的问题:一是学生在证明直角三角形全等时,个别学生出现了以角代边的现象,也即是用一对直角相等加一对斜边相等来代替了“HL”。二是不少的学生利用所学的知识来解决简单的问题能力欠缺。这同时也说明了,在上课过程中存在了这或那的不足,如分组讨论时,可能有些学生不是在讨论问题,而是在聊天或者是做其他的事。或者是我在讲解时讲得不够透要么对于学困生的关注不够,以致学生对于定理的理解不够清楚。
三、解决方法
1.课后多布置专题练习,针对不同类型的学生布置不同的作业。
2、在上课过程中多关注学困生。
3、课后多与学生交流,以了解他们的接受程度以便改进自己的授课速度,适当调整知识拓展的难易度。
反思二:直角三角形全等的判定教学反思
由于直角三角形是特殊的三角形,因而它具备一般三角形所没有的特殊性质。通过本节课的学习,要求理解已经学过的判定全等三角形的四种方法均可以用来判定两个直角三角形全等,同时通过探索得出“有斜边和一条直角边对应相等的两个直角三角形全等” 这一重要而又特殊的判定方法,并能熟练地利用这些方法判定两个直角三角形全等。在研究的过程中,注意渗透由一般到特殊的数学思想方法。为了实现教学目标,本节课改变了教材的情境设置,择取了一个更便于学生理解、更能激发学生兴趣的实例――集装箱的装运,使学生能在生活中找到数学原型,在思考中找到解决问题的办法。教学中鼓励学生大胆猜想,大胆辩驳,教师始终是一位引导者、组织者,学生的积极性得到充分发挥,取得了很好的教育效果。
本节课的教学设计有两大鲜明特色:一是重视组织和开发课程资源,关注和利用学生身边熟悉的材料,如集装箱、滑梯等,以学生已有的生活经验和感受为出发点,由课内延伸到课外,由学校走向社会,让学生切实感受到生活中处处有数学。二是注重学生在学习过程中的自主体验。教学过程中教师给学生留出了充分的活动时间和想像空间,鼓励每位学生动手、动口、动脑,积极参与到活动和实践中来。教学中将操作实验、自主探索、大胆猜测、合作交流、积极思考等学习方式贯穿数学学习的始终,促进学生形成主动学习的愿望和积极参与的意识,最终使教学的过程成了师生激情与智慧共生的过程。
在本节课的整个活动过程中,突出了标准的基本理念。从内容方面看,情境内容、议练内容都很贴近学生生活,问题串的难易程度合理,体现了基础性、普及性和实用性。从形式方面看,有学生的观察感受、有学生的独立思考,有生生的合作交流,有师生的合作小结,体现了普及性、平等性、合作性。从环节方面看,分层次的变式训练强化了知识及其应用的多样性,遵循了学生认知的自然规律,同时也把问题上升到多角度分析、灵活处理、恰当选择的数学思维高度,从而体现了数学课程的发展性。
反思三:直角三角形全等的判定教学反思
本节课教学,主要是让学生在回顾全等三角形判定的基础上,进一步研究特殊的三角形全等的判定的方法,让学生充分认识特殊与一般的关系,加深他们对公理的多层次的理解。在教学过程中,让学生充分体验到实验、观察、比较、猜想、归纳、验证的数学方法,一步步培养他们的逻辑推理能力。新课程标准强调“从具体的情景或前提出发进行合情推理,从单纯的几何推理价值转向更全面的几何的教育价值”,为了体现这一理念,我设计了几个不同的情景,让学生在不同的情景中探求新知,用直接感受去理解和把握空间关系。这一设计,极大的激发了他们的学习欲望,加深了师生互动的力度,课堂效益比较明显。不同的情景又以不同的层次逐步提升既有以知识为背景的情景,又有以探索、验证为主的情景,从不同的方面,让不同层次的学生都有所收获,体现了“大众数学”的主旋律,也是“不同的人学习不同的数学”的新课程理念的体现。
《标准》明确提出“通过对基本图形的基本性质必要的证明,使学生体会证明的必要性,理解证明的基本过程,掌握用综合法证明的格式,初步感受公理化的思想”,为体现这一目标,在“情景二”探索“HL公理”中,要求学生用文字语言、图形语言、符号语言来表达自己的所思所想,强调从情景中获得数学感悟,注重让学生经历观察、操作、推理的过程。
数学教学应努力体现“从问题情景出发,建立模型、寻求结论、解决问题”,在“情景三”中,我通过三角板的拼图,让学生从这一过程抽象出几何图形,建立模型,研究具体问题,起到了较好的作用,学生也体会到数学与现实的联系,以及学习处理此类问题的方法。作为九年级的学生,他们的抽象思维已有一定程度的发展,具有初步的推理能力,因此,教学中,我除了注重情景的运用外,更多的运用符号语言,在比较抽象的水平上,提出数学问题,加深和扩展了学生对数学的理解。纵观整个教学,不足主要体现在提出的一些问题,启发性、激趣性不足,导致学生的学习兴趣不易集中,课堂气氛不能很快达到高潮,延误了学生学习的最佳时机;在学生的自主探究与合作交流中,时机控制不好,导致部分学生不能有所收获;在评价学生表现时,不够及时,没有让他们获得成功的体验,丧失激起学生继续学习的很多机会。
总之,我们在教学中一定要考虑我们的对象,要为他们服务,为他们设想,这样才能够获得最佳教学效果。