平行四边形的判定教学反思
时间: 07-12
栏目:反思
反思一:平行四边形的判定教学反思
在整个教学过程中,以学生看、想、议、练为主体,教师在学生仔细观察、类比、想象的基础上加以引导点拨。判定方法是学生自己探讨发现的,因此,应用也就成了学生自发的需要,用起来更加得心应手。在证明命题的过程中,学生自然将判定方法进行对比和筛选,或对一题进行多解,便于思维发散,不把思路局限在某一判定方法上。学生在不同题目的对比中,在一题不同证法的对比中,能力真正得到提高。在对课案的反复打磨期间,本人收获颇丰。
但有些环节中的处理做得不是很好,定理的选择的练习中,出发点是好,但花费的时间较多,导致新课讲授的时间较少。探索判定定理时,安排了学生在练习本上写,老师巡视,最后评讲,其实最好是让学生板演;最后的练习讲评中时间比较不充裕,所以导致讲得比较简单,更多的是引导与提示,没有充分留有时间给学生思考。
改进措施:
1、对教学设计与时间地分配要做更好的思考,以增强对时间控制地敏感度,更好地分配好每一环节所花的时间。
2、让课堂慢下来,争取让更多的学生消化好课堂新知,理解好知识点与例题。
3、在课堂上放心地让学生去尝试错误,多些让学生自主思考。
4、对学生的学习与做题多些方法性的指导。
在以后的日常教学中,要有意识地进一步尝试和运用,真正使学生能力得以培养,技能逐步形成,数学素质得到提高。
反思二:平行四边形的判定教学反思
本节课是平行四边形的判定的第一课时,它是在学习了三角形的相关知识、平行四边形的定义、性质的基础上进行学习的,主要探究内容是“两组对边分别相等的四边形是平行四边形”“一组对边平行且相等的四边形是平行四边形”这两种判定定理。先采用复习引入的方式,唤醒学生的记忆,明确平行四边形的定义既是性质又是判定,然后让学生经历实践——猜想——验证——推理一系列的探究两个平行四边形的判定定理过程,最后应用判定定理解决问题。
我在教学过程中首先,通过复习平行四边形的定义、性质为本节课的顺利进行打下铺垫。让学生明确平行四边形的定义既是它的性质,又是它的判定,简单明了引出课题。
其次,让学生亲历探究两个平行四边形的判定定理的过程,也是一个数学建模过程和进一步培养学生简单的推理能力和图形迁移能力的过程;
通过平行四边形和三角形之间的相互转化,渗透了数学的化归思想。猜想1猜想2的推理过程,让学生体验了“发现”知识的快乐,变被动接受为主动探究。通过学生的互相交流,让学生自己完成其推理论证的过程。
证明命题是一个难点,因此采用先独立思考、小组合作、再由教师引导,把证明平行四边形的问题逐步转化为证明线平行、角相等、三角形全等。体现化归的思想。也使学生有一个不断的自我矫正的过程,突破了难点.
第三,教学过程中出现的问题
本节课授课容量太大,时间有些超时。
反思三:平行四边形的判定教学反思
建构主义认为学习的质量是学习者建构意义能力的函数,而不是学习者重现教师思维过程能力的函数。换句话说,获得知识的多少取决于学习者根据自身经验去建构有关知识的意义的能力,而不取决于学习者记忆和背诵教师讲授内容的能力,因此我安排了5个活动。在建构主义学习环境下,教学设计不仅要考虑教学目标分析,还要考虑学习环境中的情境必须有利于学生对所学内容的意义建构,有利于学生建构意义的情境的创设问题,并把情境创设看作是教学设计的最重要内容之一。因此我在引入中,设计了活动一,采用“以题点知,回顾应用”的教学策略,以2道精简的练习唤起学生对知识点的回忆,有效达成回顾知识点、建构知识网络、学习新知的目的,形成积极的认知氛围和情感氛围,引出本课学习内容。
为了让学生构建新知识,从操作思考入手,关注本质,我设计了活动二,
第一步“实验”,判定它一直是一个平行四边形吗?第二步“证”——引导学生运用学过的知识从理论上证明实验结果。学生结合图形,已知和求证,写出并讲解其证明过程。
第三步“得”——得到平行四边形的两个判定定理:判定定理一:两组对边分别相等的四边形是平行四边形;判定定理二:对角线互相平分的四边形是平行四边形。第四步“证”——证明平行四边形的两个判定定理:第五步“练”——利用三道练习题进一步明明晰判定。
由于没有规范的例题示范以及有关习题,所以学生的几何证明题仍然是一个弱项,因此习题课上有部分学生仍然存在会分析,但是书写不规范的情况,因此设计了活动三。为巩固提升学生对定理的掌握,有设计了活动四、五。
三、反思教学成功之处
这堂课的认知目标之一是平面几何中文字命题的证明。因此我把把目标的达成建立在学生参与命题发现过程的平台上。本节课的成功有:
1、动(师生互动):老师通过多媒体呈现问题情境,给学生足够时间亲自动脑、动手、动口参与教学,与老师共同探究判别方法,感悟知识的发生、发展过程。
2、变(多层变式):通过多层次、多角度例题变式,培养学生思维的广阔性和深刻性。
3、引(适当引导):在教学中对思维受阻的地方,教师通过层层铺垫,给予必要的引导,做到“引而不灌”,教师的引是为学生更好地学。
虽然课堂上未能看到学生的精彩表现,但从学生课后回收的作业中,我们可以看出本节课的教学目标已经有效达成。通过把握“记忆通向理解,速度赢得效率,严谨形成理性,重复依靠变式”的双基教学本质,最终实现激发学生学习的潜能,鼓励学生大胆创新与实践,落实课程标准,推进素质教育的实施。
失败与改进:1.给学生独立思考的时间不够,思维空间不够;2.没有拿某个学生写的有瑕疵的过程投影出让全班一起评改。
反思四:平行四边形的判定教学反思
本节课是平行四边形的判定的第一课时,其探究的主要内容是“两组对边分别相等的四边形是平行四边形”,以及“一组对边平行且相等的四边形是平行四边形”这两种判定方法。它是在学习了三角形的相关知识、平行四边形的定义、性质的基础上进行学习的,在教学内容上起着承上启下的作用。“承上”,首先,在探究判定定理的证明方法和运用判定定理时,都用到了全等三角形的相关知识;其次,平行四边形的判定定理和性质定理是两两对应的互逆定理,本节课在引入新课时就是类比性质引入判定的。“启下”,首先,平行四边形的性质定理、判定定理是研究特殊的平行四边形的基础;其次,平行四边形性质、判定的探究模式从方法上为研究特殊的平行四边形奠定了基础。并且,本节内容还是学生运用化归思想、数学建模思想的良好素材,培养了学生的创新思维和探索精神。
基于上述的思考在设定教学目标时,除了常规对定理的掌握和应用等的基本目标以外,
在整个教学过程中,以学生看、想、议、练为主体,教师在学生仔细观察、类比、想象的基础上加以引导点拨。判定方法是学生自己探讨发现的,因此,应用也就成了学生自发的需要,用起来更加得心应手。在证明命题的过程中,学生自然将判定方法进行对比和筛选,或对一题进行多解,便于思维发散,不把思路局限在某一判定方法上。学生在不同题目的对比中,在一题不同证法的对比中,能力真正得到提高。在对课案的反复打磨期间,本人收获颇丰。
但有些环节中的处理做得不是很好,定理的选择的练习中,出发点是好,但花费的时间较多,导致新课讲授的时间较少。探索判定定理时,安排了学生在练习本上写,老师巡视,最后评讲,其实最好是让学生板演;最后的练习讲评中时间比较不充裕,所以导致讲得比较简单,更多的是引导与提示,没有充分留有时间给学生思考。
改进措施:
1、对教学设计与时间地分配要做更好的思考,以增强对时间控制地敏感度,更好地分配好每一环节所花的时间。
2、让课堂慢下来,争取让更多的学生消化好课堂新知,理解好知识点与例题。
3、在课堂上放心地让学生去尝试错误,多些让学生自主思考。
4、对学生的学习与做题多些方法性的指导。
在以后的日常教学中,要有意识地进一步尝试和运用,真正使学生能力得以培养,技能逐步形成,数学素质得到提高。
反思二:平行四边形的判定教学反思
本节课是平行四边形的判定的第一课时,它是在学习了三角形的相关知识、平行四边形的定义、性质的基础上进行学习的,主要探究内容是“两组对边分别相等的四边形是平行四边形”“一组对边平行且相等的四边形是平行四边形”这两种判定定理。先采用复习引入的方式,唤醒学生的记忆,明确平行四边形的定义既是性质又是判定,然后让学生经历实践——猜想——验证——推理一系列的探究两个平行四边形的判定定理过程,最后应用判定定理解决问题。
我在教学过程中首先,通过复习平行四边形的定义、性质为本节课的顺利进行打下铺垫。让学生明确平行四边形的定义既是它的性质,又是它的判定,简单明了引出课题。
其次,让学生亲历探究两个平行四边形的判定定理的过程,也是一个数学建模过程和进一步培养学生简单的推理能力和图形迁移能力的过程;
通过平行四边形和三角形之间的相互转化,渗透了数学的化归思想。猜想1猜想2的推理过程,让学生体验了“发现”知识的快乐,变被动接受为主动探究。通过学生的互相交流,让学生自己完成其推理论证的过程。
证明命题是一个难点,因此采用先独立思考、小组合作、再由教师引导,把证明平行四边形的问题逐步转化为证明线平行、角相等、三角形全等。体现化归的思想。也使学生有一个不断的自我矫正的过程,突破了难点.
第三,教学过程中出现的问题
本节课授课容量太大,时间有些超时。
反思三:平行四边形的判定教学反思
建构主义认为学习的质量是学习者建构意义能力的函数,而不是学习者重现教师思维过程能力的函数。换句话说,获得知识的多少取决于学习者根据自身经验去建构有关知识的意义的能力,而不取决于学习者记忆和背诵教师讲授内容的能力,因此我安排了5个活动。在建构主义学习环境下,教学设计不仅要考虑教学目标分析,还要考虑学习环境中的情境必须有利于学生对所学内容的意义建构,有利于学生建构意义的情境的创设问题,并把情境创设看作是教学设计的最重要内容之一。因此我在引入中,设计了活动一,采用“以题点知,回顾应用”的教学策略,以2道精简的练习唤起学生对知识点的回忆,有效达成回顾知识点、建构知识网络、学习新知的目的,形成积极的认知氛围和情感氛围,引出本课学习内容。
为了让学生构建新知识,从操作思考入手,关注本质,我设计了活动二,
第一步“实验”,判定它一直是一个平行四边形吗?第二步“证”——引导学生运用学过的知识从理论上证明实验结果。学生结合图形,已知和求证,写出并讲解其证明过程。
第三步“得”——得到平行四边形的两个判定定理:判定定理一:两组对边分别相等的四边形是平行四边形;判定定理二:对角线互相平分的四边形是平行四边形。第四步“证”——证明平行四边形的两个判定定理:第五步“练”——利用三道练习题进一步明明晰判定。
由于没有规范的例题示范以及有关习题,所以学生的几何证明题仍然是一个弱项,因此习题课上有部分学生仍然存在会分析,但是书写不规范的情况,因此设计了活动三。为巩固提升学生对定理的掌握,有设计了活动四、五。
三、反思教学成功之处
这堂课的认知目标之一是平面几何中文字命题的证明。因此我把把目标的达成建立在学生参与命题发现过程的平台上。本节课的成功有:
1、动(师生互动):老师通过多媒体呈现问题情境,给学生足够时间亲自动脑、动手、动口参与教学,与老师共同探究判别方法,感悟知识的发生、发展过程。
2、变(多层变式):通过多层次、多角度例题变式,培养学生思维的广阔性和深刻性。
3、引(适当引导):在教学中对思维受阻的地方,教师通过层层铺垫,给予必要的引导,做到“引而不灌”,教师的引是为学生更好地学。
虽然课堂上未能看到学生的精彩表现,但从学生课后回收的作业中,我们可以看出本节课的教学目标已经有效达成。通过把握“记忆通向理解,速度赢得效率,严谨形成理性,重复依靠变式”的双基教学本质,最终实现激发学生学习的潜能,鼓励学生大胆创新与实践,落实课程标准,推进素质教育的实施。
失败与改进:1.给学生独立思考的时间不够,思维空间不够;2.没有拿某个学生写的有瑕疵的过程投影出让全班一起评改。
反思四:平行四边形的判定教学反思
本节课是平行四边形的判定的第一课时,其探究的主要内容是“两组对边分别相等的四边形是平行四边形”,以及“一组对边平行且相等的四边形是平行四边形”这两种判定方法。它是在学习了三角形的相关知识、平行四边形的定义、性质的基础上进行学习的,在教学内容上起着承上启下的作用。“承上”,首先,在探究判定定理的证明方法和运用判定定理时,都用到了全等三角形的相关知识;其次,平行四边形的判定定理和性质定理是两两对应的互逆定理,本节课在引入新课时就是类比性质引入判定的。“启下”,首先,平行四边形的性质定理、判定定理是研究特殊的平行四边形的基础;其次,平行四边形性质、判定的探究模式从方法上为研究特殊的平行四边形奠定了基础。并且,本节内容还是学生运用化归思想、数学建模思想的良好素材,培养了学生的创新思维和探索精神。
基于上述的思考在设定教学目标时,除了常规对定理的掌握和应用等的基本目标以外,