圆柱和圆锥教学反思
时间: 07-01
栏目:反思
反思一:圆柱和圆锥教学反思
这星期上了圆柱圆锥这一单元,通过实践操作、小组合作,学生对公式的推导过程掌握的还不错。
在实际教学时,我先复习了长方体(正方体)的体积计算方法,再由课件演示配合圆柱体积的演示器,学生兴趣很浓厚,很容易就推到出了圆柱的体积公式。然后做了书上的课后习题。这个内容,我没有根据书本进行教学,依照课件的演示逐渐推导出公式的。
在等底等高的条件下,圆锥的体积正好是圆柱体积的1/3?对于这一结论的得到。我在教学时准备好学具:一个圆锥和圆柱(等底等高的),水适量。通过老师的演示试验,我们很快得到了圆锥里的水要往圆柱里倒3次,才能把圆柱倒满,从而很轻松的记住了1/3。
从学生的练习看,单独求圆柱圆锥的体积,完成好;如果其中添加了要求圆柱的表面积,存在了几个问题。
1.单位,少部分学生老是忘记区分面积和体积单位,有的干脆一个也不写。
2.求圆柱表面积要计算圆柱的两个底面积,求完表面积之后再计算圆柱体积,有的学生就直接拿两个底面积之和去乘以高了。
3.虽然学生记住了圆锥是它等底等高圆柱体积的1/3,但再计算中仍有一部分学生忘记把1/3乘进去。
在学生练习时,我们老师一定要提醒学生答题细心,每一步想清楚了再动笔。
反思二:圆柱和圆锥教学反思
本节课多处安排学生动手操作,独立探索获取新知,如1、学生自己动手测量圆锥的高,从而找出测量圆锥高的方法。2、动手剪开圆锥的侧面,验证圆锥侧面展开图是一个扇形。3、学生通过做实验,得出圆锥的体积=等底等高圆柱体体积/3,推导出圆锥的体积公式。4、测量学具有关数据,计算体积等。这样不但培养了学生的动手能力,同时在操作过程中学生的创新能力也得到发展。
本节课的基本教学顺序是:激疑——猜想——验证——应用。如,教师先让学生猜想圆柱体和圆锥体体积的关系,然后实验验证。教给学生大胆猜想,并用科学方法验证的数学方法。如,教学“圆柱的体积”这部分内容,可先引导学生回忆平行四边形、三角形和梯形面积计算公式的推导过程,并分析、对比各个公式推导过程的共同点,以及由于图形不同而产生的不同点。接着提出如何把圆转化成已学过的图形来计算面积的问题,并让学生拿出预先准备好两个图形学具,按照书上所示的方法将圆分成16等份,剪开后拼成一个近似的长方形。然后再根据长方形的面积公式推导出圆的面积公式。这样让学生通过拼摆进行迁移,可以使学得轻松、主动。
又如:学习了圆锥体体积的计算方法后,教师设计了这样两个练习,1、计算学具的体积;2、录像出示:我校操场有一堆沙子,现在想知道它的体积,该怎样做?让学生运用所学知识解决实际问题,不但培养了学生的实践能力,同时使学生感到学有所用,提高了兴趣。
本节课中我多次利用了多媒体技术,使一些抽象的、不容易演示的内容形象化。如:平面图形旋转成圆柱体和圆锥体,圆锥体高的演示和画法,测量沙子的高和底面周长等。这样,既提高了课堂教学效率,又很好的突破了难点,加深学生对知识的理解。学生在计算时问题还比较严重,错误率比较高。学习的迁移是指一种学习对另一种学习的影响。研究和实践证明,学习迁移现象是普遍存在的,它不仅存在于知识技能的学习中,就是在情感、动机、态度乃至于方法的学习中也存在着迁移现象。
因此,教师根据知识的内存联系,只要正确、合理指导学生运用迁移,就能够培养学生自主学习的能力。
数学有很强的系统性,前面的教学内容往往为后面的教学内容提供学习的基础,后面的学习内容必须以前面的教学内容为出发点。
如,教学“圆柱的体积”这部分内容,可先引导学生回忆平行四边形、三角形和梯形面积计算公式的推导过程,并分析、对比各个公式推导过程的共同点,以及由于图形不同而产生的不同点。接着提出如何把圆转化成已学过的图形来计算面积的问题,并让学生拿出预先准备好两个图形学具,按照书上所示的方法将圆分成16等份,剪开后拼成一个近似的长方形。然后再根据长方形的面积公式推导出圆的面积公式。这样让学生通过拼摆进行迁移,可以使学得轻松、主动。
这些例子,在数学教材中很多。教师在教学中,凡是学生在已学生的基础上能够类推的,就要正确,合理地引导学生类推,这样不但以培养学生的迁移能力,也能培养自主学习的能力。
反思三:圆柱和圆锥教学反思
最近教学了《圆柱与圆锥》,内容包括圆柱的表面积、圆柱的体积、圆锥的体积等,并参与实践活动。从教材编写的层面上讲力图体现以下特点:
1.结合具体情境和操作活动,引导学生经历“点动成线”“线动成面”“面动成体”的过程,体会“点、线、面、体”之间的联系教材的第一个活动体现的内容是“由平面图形经过旋转形成几何体”,这不仅是对几何体形成过程的学习,同时体会面和体的关系也是发展空间观念的重要途径,这也是教材将此课题目定为“面的旋转”的原因。教材呈现了几个生活中的具体情境,鼓励学生进行观察,激活学生的生活经验,使学生经历“点动成线”“线动成面”“面动成体”的过程。在结合具体情境感受的基础上,教材又设计了一个操作活动,通过快速旋转小旗,引导学生结合空间想象体会立体图形的形成过程,发展空间观念。教材还提供了若干由面旋转成体的练习。
2.重视操作与思考、想象相结合,发展学生的空间观念操作与思考、想象相结合是学生认识图形、探索图形特征、发展空间观念的重要途径。在本单元中,教材重视学生操作活动的安排,在每个主题活动中都安排了操作活动,促进学生理解数学知识、发展空间观念。如“圆柱的表面积”的教学中,教材引导学生通过操作来说明圆柱的侧面展开后是一个怎样的图形,并呈现了两种操作的方法:一种是把圆柱形纸盒剪开,侧面展开后是一个长方形;另一种是用一张长方形纸卷成圆柱形。再如本单元的最后专门安排了一个“用长方形纸卷圆柱形”的实践活动,先让学生用两张完全一样的长方形纸,一张横着卷成一个圆柱形,另一张竖着卷成一个圆柱形,研究两个圆柱体积的大小;然后组织学生将两张完全一样的长方形纸裁开,把变化形状后的纸再卷成圆柱形,研究圆柱体积的变化,引导学生发现规律,深化对圆柱表面积、体积的认识,并体会变量之间的关系。
3.引导学生经历圆柱和圆锥体积计算方法的探索过程,体会类比等数学思想方法类比是一种重要的数学思想方法,是合情推理时常用的方法。教材重视类比、转化等数学思想方法的渗透。在“圆柱的体积”教学时,教材引导学生经历“类比猜想—验证说明”的探索过程。由于圆柱和长方体、正方体都是直柱体,而且长方体与正方体的体积都等于“底面积×高”,由此可以产生猜想:圆柱的体积计算方法也可能是“底面积×高”。在形成猜想后,教材再引导学生“验证说明”自己的猜想。在“圆锥的体积”教学时,教材继续渗透类比的思想,再次引导学生经历“类比猜想—验证说明”的探索过程。另外,教材还注意转化、化曲为直等思想方法的渗透,如在验证说明“圆柱的体积=底面积×高”时,引导学生把圆柱切割拼成近似的长方体进行研究,体现了化曲为直的思想方法。
4.在解决实际问题中巩固所学知识,感受数学与生活的联系圆柱和圆锥的知识在生活中有着较为广泛的应用,教材在编排练习时,选择了来自于现实生活的问题,引导学生灵活运用所学知识解决问题。如学习“圆柱的表面积”时,鼓励学生计算薯片盒的包装纸的大小、通风管需要的铁皮的面积、压路机压路的面积等,由于实际情形变化比较多,需要学生根据实际情况灵活地选择有关数据进行计算。在学习“圆柱和圆锥的体积”后,教材鼓励学生计算水桶的容积、圆木的体积、圆锥形小麦堆的体积、铅锤的质量等。这些实际问题的解决,将使学生巩固对所学知识的理解,体会数学知识在生活中的广泛应用,丰富对现实空间的认识,逐步形成学好数学的情感和态度。
从教学层面上讲,我觉得要注意这么几点:
1、让学生经历知识的生成,理解公式的由来。
2、熟记相关公式和一些常见数据,提高计算的正确率和速度。
3、注意知识的拓展应用,体现数学的应用价值,发展学生的思维能力。
反思四:圆柱和圆锥教学反思
《圆柱和圆锥》这一单元的教学内容主要有:圆柱和圆锥的特征、圆柱的表面积、圆柱和圆锥的体积三大块。这节复习课的设计主要有以下两个特点:
1、沟通知识之间的内在联系
本节课,引导学生在直观的观察与操作中,从“点、线、面、体”四个方面进一步认识圆柱和圆锥,沟通各部分知识间的内容联系,形成知识网络。这一节课,力求做到三沟通:一是沟通圆柱与圆锥两个立体图形之间的内在联系;二是沟通立体图形的整体与部分之间的有机联系;三是沟通探究问题的方法之间的联系。
2、渗透数学思想方法
(1)实践操作法
在平时的学习和探究中,尤其是在“空间与图形”的学习过程中,实践操作都是一种很好地帮助我们探究问题的方法。在复习中学生虽然没有像新授课中运用地那么充分,但也可以从中进一步体会到:实践操作可以更好地帮助自己复习回顾前面所学的知识,可以帮助自己更有效地说明问题,还可以发展学生的几何直观能力。
(2)类比与联想
在引导学生思考“你怎么会想到将圆锥的侧面展开可以帮助我们探究圆锥表面积的计算方法?”与深化练习第3题找到解决问题的方法后追问“是什么使你想到了这种方法?试想在哪个公式的推导中运用到了类似的方法?”时,引导学生有意识地回忆、总结自己的思维方式,体会类比与联想这两种认知策略在数学学习过程中的作用。
(3)转化思想
任何数学问题的解决过程,都是一个从未知向已知的转化过程。但是数学思想方法是不能自发产生的,只有有意识的教学才能为学生所掌握。本节课主要在引导学生思考圆锥表面积计算方法,回顾圆柱与圆锥体积公式的推导过程,以及探究解决练习题第3题这个问题的方法时,引导学生体会转化法在数学学习中的普遍应用,使这种数学方法由隐性走向显性。
(4)极限思想
在本节的教学设计中,本计划在引导学生回顾圆柱体积公式的推导过程时,引导学生想像:随着将圆柱的每一份分得越来越窄,越来越窄时,所拼成的长方体的长会逐渐变成一条直线,拼成的也将不再是一个近似的长方体,而是一个标准的长方体,进而渗透极限思想。但这个环节在实际教学中被忽略了。
反思这节课的教学设计与实际教学过程,还有一些问题需要思考与改进。如:
1、怎样把握复习与新授的关系?
这节课的设计已改动了多次,原来的教学设计中是先引导学生经历“点动成线”“线动成面”“面动成体”的过程,
这星期上了圆柱圆锥这一单元,通过实践操作、小组合作,学生对公式的推导过程掌握的还不错。
在实际教学时,我先复习了长方体(正方体)的体积计算方法,再由课件演示配合圆柱体积的演示器,学生兴趣很浓厚,很容易就推到出了圆柱的体积公式。然后做了书上的课后习题。这个内容,我没有根据书本进行教学,依照课件的演示逐渐推导出公式的。
在等底等高的条件下,圆锥的体积正好是圆柱体积的1/3?对于这一结论的得到。我在教学时准备好学具:一个圆锥和圆柱(等底等高的),水适量。通过老师的演示试验,我们很快得到了圆锥里的水要往圆柱里倒3次,才能把圆柱倒满,从而很轻松的记住了1/3。
从学生的练习看,单独求圆柱圆锥的体积,完成好;如果其中添加了要求圆柱的表面积,存在了几个问题。
1.单位,少部分学生老是忘记区分面积和体积单位,有的干脆一个也不写。
2.求圆柱表面积要计算圆柱的两个底面积,求完表面积之后再计算圆柱体积,有的学生就直接拿两个底面积之和去乘以高了。
3.虽然学生记住了圆锥是它等底等高圆柱体积的1/3,但再计算中仍有一部分学生忘记把1/3乘进去。
在学生练习时,我们老师一定要提醒学生答题细心,每一步想清楚了再动笔。
反思二:圆柱和圆锥教学反思
本节课多处安排学生动手操作,独立探索获取新知,如1、学生自己动手测量圆锥的高,从而找出测量圆锥高的方法。2、动手剪开圆锥的侧面,验证圆锥侧面展开图是一个扇形。3、学生通过做实验,得出圆锥的体积=等底等高圆柱体体积/3,推导出圆锥的体积公式。4、测量学具有关数据,计算体积等。这样不但培养了学生的动手能力,同时在操作过程中学生的创新能力也得到发展。
本节课的基本教学顺序是:激疑——猜想——验证——应用。如,教师先让学生猜想圆柱体和圆锥体体积的关系,然后实验验证。教给学生大胆猜想,并用科学方法验证的数学方法。如,教学“圆柱的体积”这部分内容,可先引导学生回忆平行四边形、三角形和梯形面积计算公式的推导过程,并分析、对比各个公式推导过程的共同点,以及由于图形不同而产生的不同点。接着提出如何把圆转化成已学过的图形来计算面积的问题,并让学生拿出预先准备好两个图形学具,按照书上所示的方法将圆分成16等份,剪开后拼成一个近似的长方形。然后再根据长方形的面积公式推导出圆的面积公式。这样让学生通过拼摆进行迁移,可以使学得轻松、主动。
又如:学习了圆锥体体积的计算方法后,教师设计了这样两个练习,1、计算学具的体积;2、录像出示:我校操场有一堆沙子,现在想知道它的体积,该怎样做?让学生运用所学知识解决实际问题,不但培养了学生的实践能力,同时使学生感到学有所用,提高了兴趣。
本节课中我多次利用了多媒体技术,使一些抽象的、不容易演示的内容形象化。如:平面图形旋转成圆柱体和圆锥体,圆锥体高的演示和画法,测量沙子的高和底面周长等。这样,既提高了课堂教学效率,又很好的突破了难点,加深学生对知识的理解。学生在计算时问题还比较严重,错误率比较高。学习的迁移是指一种学习对另一种学习的影响。研究和实践证明,学习迁移现象是普遍存在的,它不仅存在于知识技能的学习中,就是在情感、动机、态度乃至于方法的学习中也存在着迁移现象。
因此,教师根据知识的内存联系,只要正确、合理指导学生运用迁移,就能够培养学生自主学习的能力。
数学有很强的系统性,前面的教学内容往往为后面的教学内容提供学习的基础,后面的学习内容必须以前面的教学内容为出发点。
如,教学“圆柱的体积”这部分内容,可先引导学生回忆平行四边形、三角形和梯形面积计算公式的推导过程,并分析、对比各个公式推导过程的共同点,以及由于图形不同而产生的不同点。接着提出如何把圆转化成已学过的图形来计算面积的问题,并让学生拿出预先准备好两个图形学具,按照书上所示的方法将圆分成16等份,剪开后拼成一个近似的长方形。然后再根据长方形的面积公式推导出圆的面积公式。这样让学生通过拼摆进行迁移,可以使学得轻松、主动。
这些例子,在数学教材中很多。教师在教学中,凡是学生在已学生的基础上能够类推的,就要正确,合理地引导学生类推,这样不但以培养学生的迁移能力,也能培养自主学习的能力。
反思三:圆柱和圆锥教学反思
最近教学了《圆柱与圆锥》,内容包括圆柱的表面积、圆柱的体积、圆锥的体积等,并参与实践活动。从教材编写的层面上讲力图体现以下特点:
1.结合具体情境和操作活动,引导学生经历“点动成线”“线动成面”“面动成体”的过程,体会“点、线、面、体”之间的联系教材的第一个活动体现的内容是“由平面图形经过旋转形成几何体”,这不仅是对几何体形成过程的学习,同时体会面和体的关系也是发展空间观念的重要途径,这也是教材将此课题目定为“面的旋转”的原因。教材呈现了几个生活中的具体情境,鼓励学生进行观察,激活学生的生活经验,使学生经历“点动成线”“线动成面”“面动成体”的过程。在结合具体情境感受的基础上,教材又设计了一个操作活动,通过快速旋转小旗,引导学生结合空间想象体会立体图形的形成过程,发展空间观念。教材还提供了若干由面旋转成体的练习。
2.重视操作与思考、想象相结合,发展学生的空间观念操作与思考、想象相结合是学生认识图形、探索图形特征、发展空间观念的重要途径。在本单元中,教材重视学生操作活动的安排,在每个主题活动中都安排了操作活动,促进学生理解数学知识、发展空间观念。如“圆柱的表面积”的教学中,教材引导学生通过操作来说明圆柱的侧面展开后是一个怎样的图形,并呈现了两种操作的方法:一种是把圆柱形纸盒剪开,侧面展开后是一个长方形;另一种是用一张长方形纸卷成圆柱形。再如本单元的最后专门安排了一个“用长方形纸卷圆柱形”的实践活动,先让学生用两张完全一样的长方形纸,一张横着卷成一个圆柱形,另一张竖着卷成一个圆柱形,研究两个圆柱体积的大小;然后组织学生将两张完全一样的长方形纸裁开,把变化形状后的纸再卷成圆柱形,研究圆柱体积的变化,引导学生发现规律,深化对圆柱表面积、体积的认识,并体会变量之间的关系。
3.引导学生经历圆柱和圆锥体积计算方法的探索过程,体会类比等数学思想方法类比是一种重要的数学思想方法,是合情推理时常用的方法。教材重视类比、转化等数学思想方法的渗透。在“圆柱的体积”教学时,教材引导学生经历“类比猜想—验证说明”的探索过程。由于圆柱和长方体、正方体都是直柱体,而且长方体与正方体的体积都等于“底面积×高”,由此可以产生猜想:圆柱的体积计算方法也可能是“底面积×高”。在形成猜想后,教材再引导学生“验证说明”自己的猜想。在“圆锥的体积”教学时,教材继续渗透类比的思想,再次引导学生经历“类比猜想—验证说明”的探索过程。另外,教材还注意转化、化曲为直等思想方法的渗透,如在验证说明“圆柱的体积=底面积×高”时,引导学生把圆柱切割拼成近似的长方体进行研究,体现了化曲为直的思想方法。
4.在解决实际问题中巩固所学知识,感受数学与生活的联系圆柱和圆锥的知识在生活中有着较为广泛的应用,教材在编排练习时,选择了来自于现实生活的问题,引导学生灵活运用所学知识解决问题。如学习“圆柱的表面积”时,鼓励学生计算薯片盒的包装纸的大小、通风管需要的铁皮的面积、压路机压路的面积等,由于实际情形变化比较多,需要学生根据实际情况灵活地选择有关数据进行计算。在学习“圆柱和圆锥的体积”后,教材鼓励学生计算水桶的容积、圆木的体积、圆锥形小麦堆的体积、铅锤的质量等。这些实际问题的解决,将使学生巩固对所学知识的理解,体会数学知识在生活中的广泛应用,丰富对现实空间的认识,逐步形成学好数学的情感和态度。
从教学层面上讲,我觉得要注意这么几点:
1、让学生经历知识的生成,理解公式的由来。
2、熟记相关公式和一些常见数据,提高计算的正确率和速度。
3、注意知识的拓展应用,体现数学的应用价值,发展学生的思维能力。
反思四:圆柱和圆锥教学反思
《圆柱和圆锥》这一单元的教学内容主要有:圆柱和圆锥的特征、圆柱的表面积、圆柱和圆锥的体积三大块。这节复习课的设计主要有以下两个特点:
1、沟通知识之间的内在联系
本节课,引导学生在直观的观察与操作中,从“点、线、面、体”四个方面进一步认识圆柱和圆锥,沟通各部分知识间的内容联系,形成知识网络。这一节课,力求做到三沟通:一是沟通圆柱与圆锥两个立体图形之间的内在联系;二是沟通立体图形的整体与部分之间的有机联系;三是沟通探究问题的方法之间的联系。
2、渗透数学思想方法
(1)实践操作法
在平时的学习和探究中,尤其是在“空间与图形”的学习过程中,实践操作都是一种很好地帮助我们探究问题的方法。在复习中学生虽然没有像新授课中运用地那么充分,但也可以从中进一步体会到:实践操作可以更好地帮助自己复习回顾前面所学的知识,可以帮助自己更有效地说明问题,还可以发展学生的几何直观能力。
(2)类比与联想
在引导学生思考“你怎么会想到将圆锥的侧面展开可以帮助我们探究圆锥表面积的计算方法?”与深化练习第3题找到解决问题的方法后追问“是什么使你想到了这种方法?试想在哪个公式的推导中运用到了类似的方法?”时,引导学生有意识地回忆、总结自己的思维方式,体会类比与联想这两种认知策略在数学学习过程中的作用。
(3)转化思想
任何数学问题的解决过程,都是一个从未知向已知的转化过程。但是数学思想方法是不能自发产生的,只有有意识的教学才能为学生所掌握。本节课主要在引导学生思考圆锥表面积计算方法,回顾圆柱与圆锥体积公式的推导过程,以及探究解决练习题第3题这个问题的方法时,引导学生体会转化法在数学学习中的普遍应用,使这种数学方法由隐性走向显性。
(4)极限思想
在本节的教学设计中,本计划在引导学生回顾圆柱体积公式的推导过程时,引导学生想像:随着将圆柱的每一份分得越来越窄,越来越窄时,所拼成的长方体的长会逐渐变成一条直线,拼成的也将不再是一个近似的长方体,而是一个标准的长方体,进而渗透极限思想。但这个环节在实际教学中被忽略了。
反思这节课的教学设计与实际教学过程,还有一些问题需要思考与改进。如:
1、怎样把握复习与新授的关系?
这节课的设计已改动了多次,原来的教学设计中是先引导学生经历“点动成线”“线动成面”“面动成体”的过程,