分数的乘法教学反思(2)
时间: 03-20
栏目:反思
在教学过程中,要以教师为主导,学生为主体,为学生创造参与教学活动的情景,通过操作、演示、观察、比较培养学生的抽象概括能力,通过分析讨论,培养学生的分析综合能力。同时,教学过程中要注意抓住新旧知识的内在联系,使学生了解知识間的横向联系。学生在联系和比较中找到了知识与知识之间的联系,并获得探索知识的体验。
还要重视学法指导,培养学生的内推力。
分数的乘法教学反思四:
时间过得很快,转眼间一个月的时间又过去了,第一单元的教学也基本上完成了。回顾分数乘法这一单元的教学,在备课时一直被如何处理分数乘法意义困惑。后来一想,如果从数学应用的角度来看,学生只要能从具体的实际问题中判断两个数据之间存在相乘的关系就可以了,而这个相乘的关系在本单元有了新的拓展,即“求几个相同加数的和”、“求一个数的几倍是多少”和“求一个数的几分之几是多少”。
在教学分数和整数相乘时,根据学生的已有的知识基础,引导学生回忆复习整理整数乘法的意义和同分母分数的加法的计算法则。另外科学的学习方法,能提高学习效率,能使学生的智慧得到充分发挥。在教学分数和整数相乘的计算法则时,从学生所熟悉的整数和小数乘法的意义入手,引入分数乘法。
此外本单元在备课之初,师傅就提示自己在教学完分数乘整数和一个数乘分数后要先补充一个课时比较分数加法和分数乘法之间的区别,再进行分数乘法混合运算和简便计算的教学。当时的自己是听的一头雾水,不明白师傅的用意。直到真的开始教学分数乘法混合运算时,才明白了师傅的良苦用心。虽然在师傅的提醒下自己有进行分数加法和乘法的对比教学。但是晚上的作业还是有部分学生计算分数加法时按照分数乘法运算的规则进行计算(按分子和分子相加,分母和分母相加),到这时自己才知道师傅当时为什么要让自己对比分数乘法和加法。看到学生的作业,自己在第二天的分数乘法混合运算时,在课前复习时再次讲解分数乘法和加法的不同。让学生在计算的时候有个比较清楚的认识。虽然这个问题解决了,但是学生在分数乘法混合运算时又遇到了另一个问题,部分学生在计算加乘混合运算时,特别是加法在前面而乘法在后面的问题时,先计算加法而不是先计算乘法,在老师的指点之下才恍然大悟。说明学生对于四则运算的运算顺序不够熟练。自己在今后的教学中,也应着重强调四则运算的运算顺序。
本单元的教学,分数乘法解决问题也是一个重点内容。在帮助学生分析题意时,学生如果会画线段图,对于理解题意会有很大的帮助。但可能是由于在五年级时,比较少要求学生画出线段图,根据线段图理解题意。因此当六年级明确要求要根据题意画出线段图时,学生刚开始时很不习惯,画出的线段图也不能很好的反应题意,对于这一方面,教学时需要再进行加强,因为这对于提高学生分析问题,解决问题的能力将会有很大提高。而下一单元的教学如果学生能根据题意画出合适的线段图,对正确解答问题将会有很大的帮助。
此外,在教学中注重对单位“1”的理解,重点放在在应用题中找单位“1”的量以及怎样找的上面——先找出问题中的分率句再从分率句中找出单位“1”,为以后应用题教学作好辅垫。在以后教学前我还要深钻教材,把握好课本的度,向其他教师请教,取长补短。在课堂上多激发学生的兴趣,课后多与学生沟通,了解他们的学习动态。根据实际情况来教学,提高教学质量。
分数的乘法教学反思五:
在本节课的教学中,我以折纸涂色活动为主线,给学生提供了大量的动手操作的时间和观察交流,思考的空间,鼓励学生独立思考,从不同的角度去探究问题。探索并掌握分数乘分数的计算方法,并能够正确计算,还要能运用分数乘分数的知识解决简单的实际问题。我还重视将操作过程、文字语言、图形语言和符号语言的结合,相辅相成,鼓励学生讨论如何折纸表示3/4×1/4及其结果,这样不仅解释了符号语言的意义,也直观形象地展示了3/4×1/4的计算方法,使学生在折纸过程中,充分体会到分数乘分数的意义,感受计算分数乘分数时为什么是“分子乘分子,分母乘分母”的道理。满足了学生多样化的学习需求
在分数乘法(二)中我结合教材和课程标准的需求,首先向孩子们提出并应用了数形结合的方法。例如在引入中:把一张长方形的纸对折一次,用斜线涂出它的 1/2 ,然后对其再对折第二次,用红色涂出斜线部分的1/2 ,请你说一说红色部分占整张纸的几分之几。从学生的反馈来看,能够直观得从图中看出网格部分所占几分之几,但是学生很难列出乘法算式。(1÷4的比较多)。说明学生不能够充分理解两次做为单位“1”的量。两次折纸中有两个单位“1”,比如第一次的1份占整个图形的1/2 ,此时的单位"1"是1,但是网格部分却占斜线部分的1/2 ,此时的单位“1”是1/2 ,也就是说网格部分对于整个长方形来说是1/4,这其间隐含着两个不同的单位"1"。在此说明,学生对于分数的意义掌握还不牢固。又例如在验证分数乘法法则的过程中,让学生通过折纸的方式来理解。
其次,本课我力图让学生亲自经历学习过程。即让学生在动手操作——探究算法——举例验证——交流评价——法则统整等一系列活动中经历“分数乘分数”计算法则的形成过程。这里关注了让学生自己去做、去悟、去经历、去体验,去创造,同时也关注了学生解题策略的自主选择,关注了合作意识的培养。在教学的整体设计上是由“特殊”(分子位1分数相乘)去引发学生的猜想,再来举例验证、然后归纳概括,力图让学生体会从特殊到一般的不完全归纳思想。首先让学生通过活动概括得出“分数乘分数”只要“分子相乘,分母相乘”的计算方法,再由学生自己用折纸、化小数、分数的意义等方法来验证这种计算方法。但是对于折纸的验证方法,有个别学生还是很难理解,允许他们用小数的方法来验证,但这种方法只适用与能够化成有限小数的分数,因此在出现不能转化为有限小数的分数相乘时,这些学生就只能听同学发言,没有自己的思考过程了。所以,如何面对学生的差异,促使学生人人能在原有的基础上得到不同的发展,还是课堂教学中值得探索的一个问题。
把握好教材是基础,处理好生成与预设是关键,这是我上完了这节课后最大的收获。
本课也存在着许多不足之处:
1、由于我对新课程教材的理解不够深刻,在学生涂一涂理解分数乘法算理时,出现了三种不同的图示方法,而我只认同自己头脑中预设的那种,这样显然是不够的,数学学习的方法是多样性的,学习结果的呈现也是多样性的,开放性的。
2、教学中,过分依赖于课前的预设,丢失课堂中及时生成的教学资源,错过了挖掘课堂中学生的内因动态的生成,没有创造条件促使内因向提高数学素养的方向转化。
在今后的教学中,应多学习教育理论知识,强化学科知识,深刻领会教材,用好教材,处理好教材,把握好生成与预设的关系,提高自己的课堂应变能力,不断提高自己的业务水平。这样才会使学生学会数学、热爱数学。