分数乘法(三)教学反思
时间: 08-11
栏目:反思
反思一:分数乘法(三)教学反思
《分数乘法(三)》的重点是理解分数乘法的意义,难点是推导分数乘分数的计算法则。分数乘分数的意义是分数乘整数意义的扩展,在学生学习了分数乘整数和求一个数的几分之几是多少后,教材先以古代名题引入,引导学生初步感受。接着开展“折一折”的活动,借助图形语言,体会“分数乘分数”的意义,初步探索分数乘分数的算法和算理。教学本节课后,我觉得以下几个方面值得反思:
1.关注学生的学习状态。教学中让学生真正主动地投入地参与到探究活动中,既兼顾知识本身的特点,有兼顾学生的认知特点和学生的已有水平,寻找合适的切入口,让学生感受到眼前问题的挑战性和可探索性,让学生经历折纸操作等过程,使学生发现并掌握分数乘分数的计算法则。由于在这个过程中讨论的素材都来源于学生,他们讨论自己的学习材料,热情高涨,兴趣浓厚,都想通过自己的努力,寻找发现。
2.关注学生的学习过程。让学生亲自经历学习过程:即让学生在动手操作——探究算法——举例验证——交流评价——归纳法则等一系列活动中经历“分数乘分数”计算法则的形成过程。这里关注了让学生自己去做、去感悟、去经历、去体验、去创造,同时也关注了学生解题策略的自主选择,关注了合作意识的培养。
3.关注学生的学习方法。在引导学生经过不断地思考去获得规律的过程中,着眼点不能只在规律的本身,更重要的是一种“发现”的体验,在这种体验中感受数学的思维方法,体会科学的学习方法。本课时从教学的整体设计上是由特殊去引发学生的猜想,再来举例验证,然后归纳概括,力图让学生体会从特殊到一般的不完全归纳思想。这其间渗透了科学的学习方法和实事求是的科学精神。
另外要注意避免过于繁琐的计算,不过适量的练习还是必要的,通过练习逐步提高学生的计算技能。
反思二:分数乘法(三)教学反思
一、为什么分子相成、分母相乘。
应该说,让学生结合图形理解为什么分母相乘是直观的,从课堂的1/5来看,学生现有5份中的1份,现在1/5的1/2就是把这一份平均分成2份取其中的1份,那么要平均分成相等的几份,就相当于是把每一份都分成2份,5×2就是10,5×4就是20。那么为什么是分子相乘呢?在自己再次修改之后进行教学的时候,发现2/5×2/3为什么分子是2×2,其实第一个2表示是有2竖,第二个2表示是有2行,2×2就是2/5×2/3涂出的部分。
二、如何从分数乘整数到分数乘分数。
分数乘整数有几个数的几分之几和几个几分之几相加两种意义,到底哪一种意义可以迁移到分数成分当中来呢?1/5的1/2,感觉好像是一个数的几分之几?那么是否可以从这里入手,那么时候可以从3的1/2迁移到1/5的1/2呢?感觉不是非常的好,不利于分数图形的理解。那么情景图中的1/5×3理解成3个1/5,那么1/5×1/2就可以理解成1/2个1/5。比较之后,最终我选择了1/5的3倍来理解,1/5的1/2。进行迁移。
三、给学生一个自主的机会。
练一练在第2小题完成之后,安排了这样一个环节:分数相乘的积一定小于每一个乘数吗?在教学中,两个班,一个班一带而过,一个班花大力气让学生思考,让学生先思考,再从这道题目当中找出有哪几道题是小于的,那几道题目不是的?再让学生观察为什么有的是,有的不是?不是的原因是什么?观察发现当乘大于1的数的时候,就是大于另一个乘数了。这时候引导学生以前有没有这样的结论,小数当中也是如此,让学生把新知建构到旧知当中。
比较两次不同的教学过程,关于时间与效率两者之间的矛盾,该如何有效地进行处理,的确是一个值得去探究的问题。
反思三:分数乘法(三)教学反思
本课的主要内容是分数乘分数的意义和计算方法,学生对乘法意义的理解从“几个几分之几是多少”到“求一个分数的几分之几是多少”是学生抽象思维能力得到发展的一个飞跃教学中。如何抓住本课的重点进行教学呢?
1、设疑激趣,调动学习积极性
五年级孩子乐于探究,课始,从古代著作引入“为什么一尺长的木棍,每天截一半会永远截不完呢?”既激发孩子们的学习兴趣,调动了学生的探究欲望,又潜移默化的渗透了无限的思想。
2、相信学生,让孩子真正成为学习的主人。
前苏联教育家苏霍姆林斯基说:“在人的内心深处,都有一种根深蒂固的需要,就是希望感到自己是一个发现者,研究者,探索者,而在儿童的精神世界中,这种需要特别强烈。”听了这一课,让我更深刻的理解了这句话。课上教师充分尊重孩子们说的权利和做的权利,开展了折一折,涂一涂,说一说,算一算等活动,给孩子们营造了一个宽松愉悦的学习氛围,教师大部分时间是以参与探索者的身份出现,与孩子们一起研究,师生之间体现了平等、和谐的伙伴关系。
3、数形结合,巧妙突破难点。
理解分数乘分数的意义,是帮助孩子们理解分数乘分数的计算原理,掌握计算方法的基础,也是学生理解的困难之处,如何有效的引导呢?教学中,教师安排了两次折一折,涂一涂的活动,化抽象为具体,充分利用图形语言的直观性这个特点,引导孩子们探索、理解分数乘分数的意义:即一个分数的几分之几是多少。注重将操作过程、图形语言和抽象的算式相结合,鼓励学生通过折纸活动把四分之三乘四分之一用图形表示出来,为孩子们发现和归纳出分数乘分数的计算方法铺好了道路。有了图形的帮助,孩子们就有了思考的拐杖,对分数乘分数的计算就不再是机械的操练和模仿了。
4、让孩子们在操作中学数学。
皮亚杰曾经指出:传统教学的缺点,就在于往往是用口头讲解,而不是从实际操作开始数学教学。可以说,加强动手操作是现代的数学教学与传统的数学教学的重要区别之一。只有让每个孩子都参与到操作活动中来,才能让孩子们了解知识的发生过程。教学中,教师给每个孩子都提供了动手的机会,留足了操作的时间,在折纸过程中,学生们不但体会到分数乘分数的意义,更感受到计算分数乘分数时为什么是“分子乘分子,分母乘分母”的道理。这个过程对学生来说是很重要的,这个符号语言和图形语言相联系的过程,不仅解释了符号语言的意义,也直观形象的展示了分数乘分数的计算方法。
《分数乘法(三)》的重点是理解分数乘法的意义,难点是推导分数乘分数的计算法则。分数乘分数的意义是分数乘整数意义的扩展,在学生学习了分数乘整数和求一个数的几分之几是多少后,教材先以古代名题引入,引导学生初步感受。接着开展“折一折”的活动,借助图形语言,体会“分数乘分数”的意义,初步探索分数乘分数的算法和算理。教学本节课后,我觉得以下几个方面值得反思:
1.关注学生的学习状态。教学中让学生真正主动地投入地参与到探究活动中,既兼顾知识本身的特点,有兼顾学生的认知特点和学生的已有水平,寻找合适的切入口,让学生感受到眼前问题的挑战性和可探索性,让学生经历折纸操作等过程,使学生发现并掌握分数乘分数的计算法则。由于在这个过程中讨论的素材都来源于学生,他们讨论自己的学习材料,热情高涨,兴趣浓厚,都想通过自己的努力,寻找发现。
2.关注学生的学习过程。让学生亲自经历学习过程:即让学生在动手操作——探究算法——举例验证——交流评价——归纳法则等一系列活动中经历“分数乘分数”计算法则的形成过程。这里关注了让学生自己去做、去感悟、去经历、去体验、去创造,同时也关注了学生解题策略的自主选择,关注了合作意识的培养。
3.关注学生的学习方法。在引导学生经过不断地思考去获得规律的过程中,着眼点不能只在规律的本身,更重要的是一种“发现”的体验,在这种体验中感受数学的思维方法,体会科学的学习方法。本课时从教学的整体设计上是由特殊去引发学生的猜想,再来举例验证,然后归纳概括,力图让学生体会从特殊到一般的不完全归纳思想。这其间渗透了科学的学习方法和实事求是的科学精神。
另外要注意避免过于繁琐的计算,不过适量的练习还是必要的,通过练习逐步提高学生的计算技能。
反思二:分数乘法(三)教学反思
一、为什么分子相成、分母相乘。
应该说,让学生结合图形理解为什么分母相乘是直观的,从课堂的1/5来看,学生现有5份中的1份,现在1/5的1/2就是把这一份平均分成2份取其中的1份,那么要平均分成相等的几份,就相当于是把每一份都分成2份,5×2就是10,5×4就是20。那么为什么是分子相乘呢?在自己再次修改之后进行教学的时候,发现2/5×2/3为什么分子是2×2,其实第一个2表示是有2竖,第二个2表示是有2行,2×2就是2/5×2/3涂出的部分。
二、如何从分数乘整数到分数乘分数。
分数乘整数有几个数的几分之几和几个几分之几相加两种意义,到底哪一种意义可以迁移到分数成分当中来呢?1/5的1/2,感觉好像是一个数的几分之几?那么是否可以从这里入手,那么时候可以从3的1/2迁移到1/5的1/2呢?感觉不是非常的好,不利于分数图形的理解。那么情景图中的1/5×3理解成3个1/5,那么1/5×1/2就可以理解成1/2个1/5。比较之后,最终我选择了1/5的3倍来理解,1/5的1/2。进行迁移。
三、给学生一个自主的机会。
练一练在第2小题完成之后,安排了这样一个环节:分数相乘的积一定小于每一个乘数吗?在教学中,两个班,一个班一带而过,一个班花大力气让学生思考,让学生先思考,再从这道题目当中找出有哪几道题是小于的,那几道题目不是的?再让学生观察为什么有的是,有的不是?不是的原因是什么?观察发现当乘大于1的数的时候,就是大于另一个乘数了。这时候引导学生以前有没有这样的结论,小数当中也是如此,让学生把新知建构到旧知当中。
比较两次不同的教学过程,关于时间与效率两者之间的矛盾,该如何有效地进行处理,的确是一个值得去探究的问题。
反思三:分数乘法(三)教学反思
本课的主要内容是分数乘分数的意义和计算方法,学生对乘法意义的理解从“几个几分之几是多少”到“求一个分数的几分之几是多少”是学生抽象思维能力得到发展的一个飞跃教学中。如何抓住本课的重点进行教学呢?
1、设疑激趣,调动学习积极性
五年级孩子乐于探究,课始,从古代著作引入“为什么一尺长的木棍,每天截一半会永远截不完呢?”既激发孩子们的学习兴趣,调动了学生的探究欲望,又潜移默化的渗透了无限的思想。
2、相信学生,让孩子真正成为学习的主人。
前苏联教育家苏霍姆林斯基说:“在人的内心深处,都有一种根深蒂固的需要,就是希望感到自己是一个发现者,研究者,探索者,而在儿童的精神世界中,这种需要特别强烈。”听了这一课,让我更深刻的理解了这句话。课上教师充分尊重孩子们说的权利和做的权利,开展了折一折,涂一涂,说一说,算一算等活动,给孩子们营造了一个宽松愉悦的学习氛围,教师大部分时间是以参与探索者的身份出现,与孩子们一起研究,师生之间体现了平等、和谐的伙伴关系。
3、数形结合,巧妙突破难点。
理解分数乘分数的意义,是帮助孩子们理解分数乘分数的计算原理,掌握计算方法的基础,也是学生理解的困难之处,如何有效的引导呢?教学中,教师安排了两次折一折,涂一涂的活动,化抽象为具体,充分利用图形语言的直观性这个特点,引导孩子们探索、理解分数乘分数的意义:即一个分数的几分之几是多少。注重将操作过程、图形语言和抽象的算式相结合,鼓励学生通过折纸活动把四分之三乘四分之一用图形表示出来,为孩子们发现和归纳出分数乘分数的计算方法铺好了道路。有了图形的帮助,孩子们就有了思考的拐杖,对分数乘分数的计算就不再是机械的操练和模仿了。
4、让孩子们在操作中学数学。
皮亚杰曾经指出:传统教学的缺点,就在于往往是用口头讲解,而不是从实际操作开始数学教学。可以说,加强动手操作是现代的数学教学与传统的数学教学的重要区别之一。只有让每个孩子都参与到操作活动中来,才能让孩子们了解知识的发生过程。教学中,教师给每个孩子都提供了动手的机会,留足了操作的时间,在折纸过程中,学生们不但体会到分数乘分数的意义,更感受到计算分数乘分数时为什么是“分子乘分子,分母乘分母”的道理。这个过程对学生来说是很重要的,这个符号语言和图形语言相联系的过程,不仅解释了符号语言的意义,也直观形象的展示了分数乘分数的计算方法。