范文
菜单

考研数学一复习计划

时间: 04-27 栏目:工作计划
考研数学一复习计划一:考研数学一复习计划

了解考研大纲

高等数学约56%

线性代数约22%

概率论与数理统计约22%

试卷满分、答题时间及题型结构(试卷满分为150分,考试时间为180分钟)单项选择题8小题,每小题4分,共32分填空题6小题,每小题4分,共24分解答题(包括证明题)9小题,共94分

大纲内容

高等数学

一、函数、极限、连续(《高等数学》第一章)考试内容

函数的概念及表示法函数的有界性、单调性、周期性和奇偶性复合函数、反函数、分段函数和隐函数基本初等函数的性质及其图形初等函数函数关系的建立数列极限与函数极限的定义及其性质函数的左极限与右极限无穷小量和无穷大量的概念及其关系无穷小量的性质及无穷小量的比较极限的四则运算极限存在的两个准则:单调有界准则和夹逼准则两个重要极限函数连续的概念函数间断点的类型初等函数的连续性闭区间上连续函数的性质

考试要求

1。理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系。

2。了解函数的有界性、单调性、周期性和奇偶性。

3。理解复合函数及分段函数的概念,了解反函数及隐函数的概念。

4。掌握基本初等函数的性质及其图形,了解初等函数的概念。

5。理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左、右极限之间的关系。

6。掌握极限的性质及四则运算法则。

7。掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法。

8。理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限。

9。理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型。

10。了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质。

本章考查焦点

1。极限的计算及数列收敛性的判断

2。无穷小的性质

二、一元函数微分学(《高等数学》第二、三章)

考试内容

导数和微分的概念导数的几何意义和物理意义函数的可导性与连续性之间的关系平面曲线的切线和法线导数和微分的四则运算基本初等函数的导数复合函数、反函数、隐函数以及参数方程所确定的函数的微分法高阶导数一阶微分形式的不变性微分中值定理洛必达(L’Hospital)法则函数单调性的判别函数的极值函数图形的凹凸性、拐点及渐近线函数图形的描绘函数的最大值和最小值弧微分曲率的概念曲率圆与曲率半径

考试要求

1。理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的关系。

2。掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式。了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分。

3。了解高阶导数的概念,会求简单函数的高阶导数。

4。会求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的导数。

5。理解并会用罗尔(Rolle)定理、拉格朗日(Lagrange)中值定理和泰勒(Taylor)定理,了解并会用柯西(Cauchy)中值定理。

6。掌握用洛必达法则求未定式极限的方法。

7。理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数最大值和最小值的求法及其应用。

8。会用导数判断函数图形的凹凸性(注:在区间内,设函数具有二阶导数。当时,的图形是凹的;当时,的图形是凸的),会求函数图形的拐点以及水平、铅直和斜渐近线,会描绘函数的图形。

9。了解曲率、曲率圆与曲率半径的概念,会计算曲率和曲率半径。

本章考查焦点

1。洛必达法则求极限

2。导数的应用

三、一元函数积分学(《高等数学》第四、五、六章)

考试内容

原函数和不定积分的概念不定积分的基本性质基本积分公式定积分的概念和基本性质定积分中值定理积分上限的函数及其导数牛顿一莱布尼茨(Newton-Leibniz)公式不定积分和定积分的换元积分法与分部积分法有理函数、三角函数的有理式和简单无理函数的积分反常(广义)积分定积分的应用

考试要求

1. 理解原函数的概念,理解不定积分和定积分的概念。

2. 掌握不定积分的基本公式,掌握不定积分和定积分的性质及定积分中值定理,掌握换元积分法与分部积分法。

3.会求有理函数、三角函数有理式和简单无理函数的积分.

4.理解积分上限的函数,会求它的导数,掌握牛顿-莱布尼茨公式.

5.了解反常积分的概念,会计算反常积分.

6.掌握用定积分表达和计算一些几何量与物理量(平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行截面面积为已知的立体体积、功、引力、压力、质心、形心等)及函数的平均值.

本章考查焦点

1.用积分表达、计算几何量和物理量

2.积分上限的函数的导数

3.积分中值定理

4.积分的计算


考研数学一复习计划二:考研数学一复习计划(5496字)

1.基础阶段

考生可根据自身的情况调整这个阶段的长短,基础好一点的同学,这个时间可以短一点,基础差一点的同学,这个阶段可以长一点。我们建议基础再差的同学也要尽量在六月份前完成基础阶段复习。数学基础阶段复习的指导原则是:注重大纲和基础,加强练习和应用。

(1)注重大纲和基础

“纲”是《数学考试大纲》,“本”为课本。虽然今年的数学考试大纲尚未颁布,但万变不离其宗,考研数学的基本内容一般变化不大,考生可以参照去年的《数学考试大纲》和《数学考试大纲导读》进行复习,详细了解本专业应考的数学卷种的基本要求,考试的题型、类别和难易度,以便更好地展开复习。凡是在大纲中表述为“会”、“理解”、“掌握”等的考试内容往往都是主要考点,务必要作为复习的重点。

考研数学的复习主要靠教材打下坚实的基础。翻一下数学大纲,上面列出的知识点全部来源于教材。现在市面上并没有专门针对考研的数学教材,有些辅导老师根据自己多年的经验会给出同学们一些建议参考的教材,如同济编高教版《高等数学》、同济编高教版《线性代数》、浙大编高教版《概率论与数理统计》等,这些教材仅仅是建议,因为相对于其他教材来说,编写更有条理一些,,也可以用自己已经习惯使用的大学数学教材,但关键是一定要老老实实参照大纲的要求进行全面扎实的复习,按照大纲规定对数学基本概念、基本方法、基本性质和基本定理进行准确把握。

数学学习中最重要的莫过于坚实的基础,包括对定理公式的深入理解,对基本运算的熟练和高正确率,对基本解题方法的掌握和运用。近几年的数学统考试题很少有偏题、怪题。新东方在线老师通过多年的分析和授课经验,发现很多考生由于对基本概念、定理记不全、记不牢、理解不准确而丢分,所以数学首轮复习一定要注重基础。

(2)加强练习和应用

研究生数学考试注重考查考生的综合能力,最终要看解题的真功夫,而能力的提高要通过大量的练习,所以考生切忌眼高手低、只看书不做题。

这一阶段的复习可以将课本和复习指导书配套进行,在精读课本的基础上,配合一定的题目练习及时加以巩固。

近年来的数学考研试题的一大特征是要求考生能将一些范围并不固定的几何、物理或者其他问题先建模抽象为数学问题,再利用相应的数学知识解答(理工类已考过井底清污、雪堆融化、攀岩选址、压力计算、海洋勘测、汽锤作功、飞机滑行等问题)。考研也考熟练度,只有通过针对性的实际训练才能真正地理解和巩固数学的基本概念、公式、结论。在练习过程中还要总结解题的技巧、套路,积累经验,把分散的知识在实际运用中联系起来,在理解的基础上触类旁通,熟能生巧后才能运用所学知识解决实际问题,以不变应万变。

2.强化阶段

这个阶段是需要将教材中的基础知识进行总结归纳,全局把握的时期。

(1)根据学科特点复习

考研数学中包含三个学科:高等数学(微积分)、线性代数、概率论与数理统计。考研专家提醒广大考生:数学中的三个学科不可有所偏颇!每个考生都有自己相对优势的学科,同学们会因为对一门课程感觉良好而喜欢学它,因为对另一门课程接触得少而感觉困难并畏惧学它。

高等数学(微积分)--在考研数学科目所占比例中,高等数学(微积分)所占比例是最大的,数学一、三中是56%,数学二中是78%。这就决定了考生在复习的时候应该分配的精力与时间更多一些。而在这相对较多的时间与精力中,如果再能事半功倍,便为考研高分奠定了基础。

高等数学的基本内容可以分为三大块外加一小块:一元函数微积分,多元函数微积分(主要是二元函数),无穷级数与常微分方程,外加向量代数与空间解析几何。前三块是高等数学部分出题的重点,后一小块虽然大纲中也写了多半页纸的文字,但历年真题中直接针对这一块出题的很少,这也就是把这个部分归于一小块的缘由。

那么高等数学如何复习才能成为真正的高手呢?

选择合适的复习资料。根据以上对高等数学内容的分块划分,需要选择适合自己的复习资料。资料的选择要看其是否按考研大纲的要求编写,看其对基本内容的讲述是否深入且易懂,看其层次性是否分明等等,如《考研数学复习大全》相对来说就比较适合考生对基础知识的巩固及深入理解。

看书要擒贼先擒王。在看教材及辅导资料时要依三大块分清重点、次重点、非重点。阅读数学图书与其他文艺社科类图书有个区别,就是内容没有那么强的故事性,同时所述理论有一定抽象性,所以在看书时需要不断思考其逻辑结构。比如在看函数极限的性质中的局部有界性时,能够联系其在几何上的表现来理解,并思考其实质含义及应用。三大块内容中,一元函数微积分是基础,定义一元函数微积分的极限及高等数学的主要研究对象--函数及连续是基础中的基础。这个部分也是每年必定会出题考查的,必须引起注意。多元函数微积分,主要是二元函数微积分,这个部分大家需要记很多公式及解题捷径。第三大块的无穷级数与常微分方程部分的重点很容易把握,考点就那几个,需要注意的是其与实际问题结合出题的情况。

看书的顺序与成效直接相关。人在读书的时候习惯于从头至尾看,对于每天都从头开始的人来说,永远不能看到后面的内容。在看数学教材或辅导书时,最好每次看一个部分,下一次从接着的部分开始看下一部分。这样每一次的内容都自成一个体系,不至于每次看的时候花大量的时间做前后的衔接。还有,如果计划高等数学复习三遍,那么最好第一遍的时候从头至尾,第二遍从后往前,第三遍用来总体把握。

线性代数--线性代数在考研数学一、二、三中的比重都是22%,分值为34分,填空题及选择题占12分,大题占22分。虽然线性代数的分值比重不大,但往年的失分率一般都在60%以上,可见高效地复习线性代数非常重要。大纲中关于线性代数在三种类型的数学试卷中的较大区别在于:数学一对向量空间、基、过渡矩阵有要求。

在学习任何一门课程时都要尽量了解其特点、知识体系、学习方法,进而提高学习兴趣,产生学习动力;在复习一门课程时最好先从整体把握,再各个击破重点、难点,掌握各部分基本题型,进而达到融会贯通,对线性代数这个学科的备考更是如此。

线性代数从大的方面看包括六个“点”:行列式,矩阵,向量,线性方程组,特征值与特征向量,二次型。在初始复习阶段基本分两条线:一条线是行列式,矩阵,向量结合方程组;另一条线是特征值、特征向量与矩阵对角化结合二次型的标准形。行列式应用于方程组是通过克莱姆法则,矩阵应用于方程组是通过逆阵与矩阵的秩,向量组的线性相关性与齐次线性方程组的两种解的类型对应,一个向量可否由一个向量组线性表示本质上与非齐次线性方程组是否有解对应;特征值、特征向量及矩阵对角化的主要应用在于化二次型为标准形。当然矩阵是贯穿线性代数的最重要的工具,矩阵本身最重要的特性就是秩。在强化复习阶段要把整个知识点融合起来,例如对方阵来说,既可以研究其对应的行列式,又可以与矩阵的行或列向量组联系起来,还可以研究其特征值、特征向量及其对角化。

只有各概念及性质之间的融会贯通才能加深对线性代数的理解,达到应用自如的目的。

概率论与数理统计--如果把三个科目按次序划分的话,总是高等数学(微积分)排第一,这也无可厚非,因为它不论从大学时学习的先后次序,还是从其知识的递进,拟或从考研数学中所占的比例来说都是当仁不让的;线性代数可排第二了,因为对大多数同学来说,线性代数相对来说要简单一些;概率论与数理统计总是排末位,这是有一定客观原因的,即概率论与数理统计中需要用到一些高等数学(微积分)的理论与方法,只有学习完高等数学(微积分)之后才能顺利学习它。

考研所考三个科目的排列顺序并不表明其重要程度。事实上概率在实际中的应用更广泛一些,所以学好概率论与数理统计有很大的现实好处。好了,先不用物质利益来引诱大家了。现在我们来捯一捯如何能顺利通过考研中概率部分的题目解答取得高分,这是目前考研的同学们的重要任务。

第一,我要说的是同学们在学习概率论与数理统计的时候不要一头扎入古典概型的概率计算中不可自拔。概率论的第一部分就是关于古典概型与几何概型的计算问题,有很多问题是很复杂的,一旦陷入这一类问题的题海中,要么你的脑瓜会越来越聪明,要么打击你的信心,对概率论失去兴趣。一般同学都会处于后一种状态。那么怎么办呢?请转阅第二条。

第二,对概率论与数理统计的考点要整体把握。考研中,概率论的重点考查对象在于随机变量及其分布和随机变量的数字特征。所以对于第一条中所讲的古典概型与几何概型这部分,只要掌握一些简单的概率计算即可,把大量精力放在随机变量的分布上。数理统计的考查重点在于与抽样分布相关的统计量的分布及其数字特征。20XX年考研数学考试大纲数学三删除了对概率论与数理统计中的假设检验的要求,这算是较上一年大纲的一个大的变化,但如果同学们在复习的时候就是整体把握的,就会明白大纲的这点变化对自己的复习是没有影响的。这就是对一门课程整体把握的优势。

第三,在心理上重视。考研数学试题中有关概率论与数理统计的题目对大多数考生来说有一定难度,这就使得很多考完试的同学感慨万千,概率题太难了!同时也向学弟学妹们传达了概率题目难的信息。所以同学们在复习之前就已经有了先入为主的看法:概率比较难!但同学们没有注意到,在自己复习之初做的准备都是关于高等数学(微积分)的,在概率上的时间本身就不足。而且如果你的潜意识中觉得一件事情难的话,那么那件事情对你来说就真的很难。我一直认为,人的潜力是非常巨大的。这也与“有多少想法,就有多大成就”的说法相合。如果你相信自己,那么概率复习起来是简单的,考试中有关概率的题目也是容易的,数学满分不是没有可能的。那么,从现在开始,在心理上告诉自己:概率并不难!

(2)根据题型特点复习

考研数学考试题型有三种:选择题,填空题,解答题。前两种可统称为客观题,后一种称之为主观题。对于客观题,其难度系数不会太高,也就是说考试时在这一类题目上花的时间不应太多,这也就需要在平时多下功夫。这里的多下功夫,不仅仅指对基础知识点融会贯通,而且当基础知识掌握到一定程度时,要在总结方法技巧上花心思,同时做一些专门的题集,以达到专项训练的目的。

根据不同的题型特点,有意识地加强练习做题的感觉,对复习效果会事半功倍,在做题时可以从以下几个方面入手:

从哪里开始?

做题要从题目的叙述开始。拿到一个题目,做题的第一步是要仔细阅读题目,把握题目的主要含义。阅读题目直到即使不看题目,也能记住题目的意思。

能想到什么,能做什么?

在阅读题目的基础上,尽可能使题目形象化,并从题目的叙述中抽出主要部分,即条件与结论、已知与未知等。仔细考虑题目的各主要部分,将它们以不同的方式进行组合,把每个细节与另一些细节联系起来。从不同方面来观察题目,寻找题目与你已经获得的知识之间的联系。从不同角度,通过不同的途径反复考察题目中的细节点,尝试从中找到新的意义和新的解释。再次调动已有知识,寻求其与题目之间的联系,试着认清题目中所隐含的你熟悉的东西。

这样做能得到什么?

准备好并弄清那些以后可能会起作用的细节。把各种思路都考虑一下。如果一种思路看上去很有利,你就多考虑一下;如果一种思路感觉很可靠,那就弄清楚它能引领你走多远。也许一种思路就会让你直达目标,也许你需要一个思路一个思路地试探其可行性,最终找到解答。对题目的每一种念头都是有用的,这些念头对最终通往结果的思路都起到促进作用。解答的方法可能不止一种,在找到一种解答方法之后,解题的过程并未结束。思考你的解答与已有知识之间的关系,看看你的解答是否可以简化。如果可以,改进你的解答过程,使之更加直观、简洁。检查引导你获得解答的方法,找出其要点,并在其他题目中尝试应用它。

如果你有意识地使用这种方式解题,那么一段时间过后,你会发现自己的解题能力、解题技巧、解题速度与正确性都会大大提高。

3.冲刺阶段

考研数学复习冲刺阶段,最重要的是加强综合能力的训练。考研命题着重于对基本概念、基本原理和基本方法的综合应用,有很大的灵活性,往往一个命题覆盖多个内容,涉及到概念、直观背景和数理计算等多种角度。因此一定要力争在解题思路上有所突破,要在打好基础的同时做大量的综合题,并对试题多分析多归纳多总结,对常见考题类型、特点、思路有一个系统的把握。

刚开始做往年的考研真题,接着是模拟题,两天一套,把做错的而又觉得思路很好的题都抄在本子上。在这里要强调一点的就是,先不要做模拟题,应该把真题做一遍。因为真题的错误率比较低,而有的模拟题出得刁钻古怪没有权威性。通过《考研数学历年真题解析及命题规律透视》丛书的“历年试题”的练习,考生可以真切体会到考研的重点、难点,掌握各种常考的题型,在开始做真题的时候,考生往往漏洞百出,不是公式记不清了,就是思路不熟,完成一套题之后,“真题解析”部分从“考点”、“分析”、“详解”、“讲评”等角度出发展开分析与讲评,帮助考生完成疑点、难点、高频易错点的系统归纳,在真题的实战演练中不断增强自信。

这个阶段做数学模拟题的时候,一定要注意以下几点:

合理控制答题时间。只有平时养成良好的习惯,考试的时候才能做到心中有数,不至于遇到问题就惊慌失措。

熟记数学公式。大家一定要熟记,而不能只是大概地、模糊地记忆。

注意知识点间的联系。这一阶段的考研冲刺辅导班对于那些考研复习准备的时间比较仓促,没时间好好梳理知识点的同学来说,上冲刺班是十分必要的。

考研数学绝对不容易,但也有一大半的基础题。所以,此阶段大家还是要巩固基础,把该拿的分数拿到手,基础扎实了再多练习一点中等难度的题目,相信数学要过线不是问题。当然,对于要求高点的同学则要在注重基础的同时注重自己综合能力的提高。


考研数学一复习计划三:考研数学一复习计划(2335字)

随着“考研”在大学校园关注热度的一路飙升,广大学子进入备考阶段的时间点也一年早于一年。对数学公共课这种需要打持久战的科目而言,考研复习初期的基础阶段能够合理安排复习计划,打下牢固、良好的基础,对考试最终的结果有重要的影响。数学复习具有基础性和长期性的特点,数学知识的学习是一个长期积累的过程,要遵循由浅入深的原则,先将知识基础打牢,构建起知识体系,然后再去追求技巧以及方法,一座高楼大厦必定是建立在坚实的地基之上的,因此我们将基础知识的复习安排在第一阶段,希望大家给予足够重视。

一、20XX年数学一试卷结构

种类

内容比例

题型比例

数学一 高等数学56%

单选题约21%

线性代数22%

填空题约16%

概率论与数理统计22%解答题约63%

命题从布局上看,覆盖面宽,几乎所有重点章节均有涉及,各个知识点分布合理。从难易度上讲,试题主要以考查数学的基本概念、基本理论、基本方法、基本能力为主,尤其是它们的延伸、扩展、转换、综合和应用。从发展趋势看,这种命题特点将持续,难度将会向下调整,计算技巧性过强的题将逐渐减少,而且绝不会出现超纲题、偏题、怪题,但由于选择题比重增加,题量有所增加,时间越来越紧。因此,在复习时,不要听信谣传,不要迷信押题,不要偏科,不要忽视基本功而去啃偏题、明显超纲题和计算量繁杂的题,相反,应该强调的是要整体把握好大纲各知识点,这些知识点是前后之间有逻辑联系的网络,网络的结点就是考点和重点。

二、下面我们要介绍该如何复习数学一

首先,同学们需要把数学复习全书上总结好的知识点认真掌握。一般不同版本的复习全书上的知识点讲解都很全面、详细,还有例题讲解当中总结出的解题技巧和方法,推导出的公式、定理,都要重点记忆。对于基本知识、基本定理和基本方法,关键在理解,而且理解还存在程度的问题,不能仅仅停留在看懂了的层次上,对一些易推导的定理,有时间一定要动手推一推,对一些基本问题的描述,特别是微积分中的一些术语的描述,一定要自己动手写一写,这些基本功都很重要,到临场时就可以发挥作用了。同学们一定要注意,在掌握基本概念的同时不要忘记了要适当地将所有的公式、定理、概念联系起来复习,并且在此过程中要大量地做练习题,因为公式、定理不是你记住就代表你掌握了,关键是要运用到解题上。俗话说熟能生巧,对于数学的基本概念、公式、结论等只有在反复练习中才能真正理解与巩固。数学试题虽然千变万化,其知识结构却基本相同,题型也相对固定,往往存在一定的解题套路,熟练掌握后既能提高正确率,又能提高解题速度。

其次,看书做题有机结合。数学这一学科的特点决定了同学们复习的时候除了看书还需要及时通过做题巩固复习效果,否则对概念、原理的记忆和理解过一段时间就会变得很陌生。建议同学们参考考纲中的规定按章节循序渐进,在复习的时候通过看书形成清晰有条理的知识网络,熟悉知识点及常用公式结论之后做一些习题加深对概念、定理的理解和常用方法的应用。所谓万丈高楼平地起,基础阶段的关键在于透彻把握基础知识和基本的解题能力,因此这个阶段的做题最好从基本题型的训练开始,不宜一上来就钻研难度很大的题目。由于教材当中的题目并不仅仅针对某一类型的考研数学复习,大家可选取一些适合复习使用的参考书,如考研数学必做客观题1500题,由于辅导书中三大部分的章节安排、题目涉及的考点以及对应的难度要求与考纲完全一致,因此对考生来讲就像拥有了一个合理安排复习计划和进度的贴身教练,对复习的解题一关起到极大的辅助与促进作用。以客观题的专项训练作为基础阶段的解题训练的一部分,能最大程度上巩固加深对基本知识点和基本解题方法的认知,训练自己的解题思路和方法,达到熟能生巧,为后续的复习打下坚实的基础。

再次,善于归纳,学会总结,使知识调理化系统化。善于总结也是同学们在复习的过程中需要注意的一点。因为很多同学做题的过程就到对过答案或是纠正过错误就简单的结束了,一套题的价值也就到此为止了。大家在纠正完错误之后,再把这套试题从头看一遍,总结一下自己都在哪些方面出错了,原因是什么,这套题中有没有出现我不知道的新的方法、思路,新推导出的定理、公式等,并把这些有用的知识全都写到你的笔记本上,以便随时查看和重点记忆。对于大题的解题方法,要仔细想一想,都涉及到哪些科目和章节了,这些知识点之间有哪些联系等,从而使自己所掌握的知识系统化,以达到融会贯通。只有这样,才能使你做过的题目实现其最大的价值,也才算是你真正做懂了一套题。如果你能够这样做了,那么做过的题在以后的复习中如果没有时间了,就不用再拿出来重新看了,因为你已经把要掌握的精华总结好了,只需看你的笔记本就行了。解数学题一定要从思路,原理的角度入手。

最后,充分重视往年考研真题。从历年试卷可以看出,凡是考试大纲中提及的内容,都有可能考到。因此,以押题、猜题的复习方法来对付考研靠不住,很容易在考场上痛失分数而败北。另外,到11月份后还需要做一些合适的模拟题,要注意试题的质和量。同时,做的时候最好是参加模拟考场,或者自己设定一个时间,尽量按照考试的时间和状态去测试自己,置自身于考试环境与状态之中,也能达到预热效果。

三、复习进度表

每天至少应该花3个小时左右来复习数学,这样才能保证在基础阶段把整个数学的基础知识复习完。其中用用一半时间理解掌握概念、定义等,用剩下的一半时间来做习题巩固。对于数学基础较薄弱的同学建议每天再加一个小时的复习时间用来做习题并总结。

考研数学一般考察考生的基础知识的掌握和运用解题的能力。数学的复习不像政治有的时候对于某些人是可以用突击的形式来完成的。数学与英语复习相似,需要一步一步的积累知识、循序渐进的学习方法。

最后,祝愿复习20XX年考研的同学们能够复习顺利。


为你推荐