范文
菜单

实际问题与二次函数教学反思

时间: 08-15 栏目:反思
反思一:实际问题与二次函数教学反思

二次是函数是函数中的重点、难点,它比较复杂,一般来说我们研究它是先研究其本身性质、图象,进而扩展到应用,它在现实中应用较广,我们在教学中要紧密结合实际,让学生学有所用,在教学中应注意以下几个问题:

(一)把握好课标。九年义务教育初中数学教学大纲却降低了对二次函数的教学要求,只要求学生理解二次函数和抛物线的有关概念,会用描点法画出二次函数的图像;会用配方法确定抛物线的顶点和对称轴;会用待定系数法由已知图像上三点的坐标求二次函数的解析式。

(二)把实际问题数学化。首先要深入了解实际问题的背景,了解影响问题变化的主要因素,然后在舍弃问题中的非本质因素的基础上,应用有关知识把实际问题抽象成为数学问题,并进而解决它。

(三)函数的教学应注意自变量与函数之间的变化对应。函数问题是一个研究动态变化的问题,让学生理解动态变化中自变量与函数之间的变化对应,可能更有助于学生对函数的学习。

(四)二次函数的教学应注意数形结合。要把函数关系式与其图像结合起来学习,让学生感受到数和形结合分析解决问题的优势。

(五)建立二次函数模型。利用二次函数来解决实际问题,重在建立二次函数模型。但是在解决最值问题时得注意,有时理论上的最大值(或最小值)不是实际生活中的最值,得考虑实际意义。  

(六)注重二次函数与一元二次方程、一元二次不等式的关系。利用二次函数的图像可以得到对应一元二次方程的解、一元二次不等式的解集。


反思二:实际问题与二次函数教学反思

这节课我是采用先让学生按照学案的提示,自主预习课本,受到课本所给出的分析过程的思维限制,很容易把问题解决了,但没有放手让学生从不同角度去尝试建立坐标系,体会各种情况下所建立的坐标系是否有利于点的表示,没有激发学生学习的热情,没有给予学生以启迪。用二次函数知识解决实际问题是本章学习的一大难点,遇到实际问题学生往往无从下手,学生在解题过程中遇到一个新的问题该如何去联想?联想什么?怎样联想?这与课堂教学过程中老师解题方法的讲授至关重要,老师在课堂教学过程中应如何引导学生判断、分析、归类。为此我在另一个班采取了以下的教学过程,突出以学生为主体,教师只是引导学生经历分析——观察——抽象——概括——发现新知——解决新知的过程。为了让学生发现方法、领悟方法、运用方法,同时我特意给学生留有一定的思考和交流讨论的时间。
          
通过两节课的对比,我发现数学的自主学习,不能千遍一律,应针对具体内容采取灵活多变的方法。例如一些简单的计算的课堂可以先让学生自主预习,独立进行探究,完成课本上的填空,发现规律;然后小组共同归纳,总结规律,应用规律学习例题,解决问题。一些需要思维的课堂活需要探讨的课堂,我认为应该利用学案,不让学生看课本,教师引导学生进行探究活动,让学生自己发现关系、规律。总之数学的自主学习课应根据课程内容的不同,采取不同的方法,才会收到较好的效果。
 

反思三:实际问题与二次函数教学反思

、已知某商品的进价为每件40元。现在的售价是每件60元,每星期可卖出300件。市场调查反映:如调整价格 ,每涨价一元,每星期要少卖出10件;每降价一元,每星期可多卖出20件。如何定价才能使利润最大?

第一节是7班的课,我知道二次函数应用是难点,何况该题目又是涨价又是降价。我怕把学生弄糊涂,上课后先让学生读题弄明白题意,后又让学生讨论。大约10分钟,检查结果很不理想。大部分学生对该题目感觉无从下手。相当一部分学生考虑问题的出发点总离不开方程。       

给8班上课之前我就琢磨,怎样才能让学生从方程思想过渡到函数。函数也是解决实际问题的一个重要的数学模型,是初中的重要内容之一。于是在第二节课的教学时我做了如下调整,设计成三个题目:

1、已知某商品的进价为每件40元,售价是每件60元,每星期可卖出300件。市场调查反映:如调整价格 ,每涨价1元,每星期要少卖出10件。要想获得6000元的利润,该商品应定价为多少元?(学生很自然列方程解决)

改换题目条件和问题:

2、已知某商品的进价为每件40元,售价是每件60元,每星期可卖出300件。市场调查反映:如调整价格 ,每涨价一元,每星期要少卖出10件。该商品应定价为多少元时,商场能获得最大利润?

分析:该题是求最大利润,是个未知的量,引导学生发现该题目中有两个变量——定价和利润,符合函数定义,从而想到用函数知识来解决——二次函数的极值问题,并且利润一旦设定,就当已知参与建立等式。

于是学生很容易完成下列求解。
 

反思四:实际问题与二次函数教学反思

今天,领着学生一起学习了实际问题与二次函数探究三:如图是抛物线,当水面在时,拱顶离水面2米,水面宽4米。水面下降1米,水面宽度增加多少?我先提出一些问题:

请同学们阅读课本第25页,回答下列问题: 1.本题是怎样建立的坐标系?这样建立坐标系有什么好处? 2.把抛物线形桥拱建立在坐标系中有什么作用? 3.此时二次函数的解析式可设为什么形式?为什么? 4.问题中的“当水面在L时,拱顶离水面2米,水面宽4米”是为了给抛物线提供什么信息? 5.当水面下降1米时,水面的纵坐标是多少? 6.还有其他的建立坐标系的方法吗?试试看让学生根据提出的问题自学。再检查学生对课本上的解法及步骤没有问题后。我有提出新的问题:你还有其他的建立坐标系的方法吗?如果有,写出相应的解析式。试试看。一位学生竟然给出了六种建立坐标系的方法,并写出了其中的一个解析式。我把学生建立的不同形式的坐标系对应的解析式写在黑板上。又提出新的问题:我们所有的解析式有一个共同的特点,你发现了吗?通过观察,学生明白了对于同一个问题建立的坐标系不同,得到的解析式不同,但求得结果一样。并且所有的解析式二次项的系数都相同。最后我又让学生对比,找出那一种方法最简便,易操作。

通过学生自己的解答以及对问题的探讨,很清晰的理解了本节课。并找出了最优的一种解法。于是我不是时机的告诉学生:二次函数是一类最优化问题的数学模型,能指导我们解决生活中的实际问题,同学们,认真学习数学吧,因为数学来源于生活,更能优化我们的生活。  

于是我趁热打铁出了一道检测题,并提出要求:用两种你认为比较简便的方法解答。
      
某公司草坪的护栏是由100段形状相同的抛物线组成的,为牢固起见,每段护栏需按间距0.4m加设不锈钢管(如图a)做成的立柱,为了计算所需不锈钢管立柱的总长度,请建立适当的坐标系。

(1)求该抛物线的函数关系式;

(2)计算所需不锈钢管立柱的总长度。
     
从学生的展示看,效果不太理想,有的学生能正确的建立坐标系却不能正确的写出解析式,有的是建立坐标系后单位长度习惯性的取1、2、3等等,有的是坐标系、解析式都对,代入求值时出错,有的是坐标的顺序写反了等等。错误较多。

下课后,我开始反思我的课堂,这节课不是太难理解,知识也比较单一,为什么学生出错那么多?究其原因:前面学的旧知识忘了造成了坐标的写反;对知识的定势,造成了单位长度标识的时候出错;计算的不认真导致了写错解析式,代入求值时出错等。实际上,作为老师应该预见到自己学生的一些出错倾向,比如计算的错误,应该不断的给予提醒。单位长度标识的错误提醒我,应该让学生很清晰的意识的坐标系单位长度是根据需要标注的,具体情况具体对待,不同的问题标注是不相同的。像今天这节课,我觉得应该带领同学们板书一下过程,学生的出错可能会少一点。

本节课我有一个收获,学生思维的活跃让我兴奋。我认识到:只要你相信学生,他就能给你创造奇迹。
为你推荐