商的近似值教学反思
时间: 06-23
栏目:反思
反思一:商的近似值教学反思
当前的基础教育课程改革应将"以知识为中心的"的课程和"以儿童为中心"的课程整合成"以情景为中心"的课程,与之相应的课堂教学设计也需要重新确立新的理念。
本节课的设计理念主要体现的是"以情景为中心"的课程思想。我力把"以学生为本"的理念体现在整个课堂教学的过程中。更多地侧重于促进学习者的发展,更多的关注学习者学习能力,习惯和态度地形成,关注学习者的主动求知与实践参与,关注学习者的价值观念于情感态度在学习活动中的作用。因此,我在制定这节课的目标时,除了培养学生进行初步的观察、分析、综合、抽象、概括的能力,使学生感受数学与现实生活的密切联系,培养学生的探索意识,还包括培养学生高层次的数学思考能力、创新精神和解决实际问题的能力。
建构主义理论认为,学习不是知识由教师向学生的传递,而是学生主动建构自己知识的过程。学生并不是空着脑袋走进教室的,在日常生活中,在以往的学习中,他们已经积累了丰富的经验,他们都有自己的看法。而且,有些问题即使他们还没有接触过,没有现成的经验,但当问题一旦呈现在他们面前,他们往往可以基于相关的经验,依靠他们的认知能力,形成对问题的解释。所以,教学不能无视学生的原有经验,他们在学习新知之前,已有了一定的生活经验和实践积累。以此为依据,我在导入新课时,以实际情景导入情境的创设,根据学生原有认知水平,进行教学,这使学生感到与他们原有知识经验的不协调,从而产生学习的认知需要,引起学生的求知欲。
在教师的引导下,自己解决问题,除不尽时要取近似值;同样,再教学时,再让学生尝试计算,学生再一次发现问题,虽然得数能除尽,但根据实际生产、生活的需要,并不需要很多小数位数,这时也要取近似值。 “求商的近似值与积的近似值有什么相同点和不同点?”这些环节时,我通过让学生先独立思考,再小组讨论,使学生学会合作、学会表达、学会交流。
整节课基本上体现了"以学生为本"的理念,体现了"以情景为中心"的课程思想。但是,在具体教学过程中有些细节方面不是把握得很好。
1、生活语言运用得不够贴切。
2、时间把握不够。本着“以学生发展”的理念,我设计了一系列联系学生实际的练习题,但是一节课下来,有几道练习题来不及讲完。究其原因,除了本节课的计算量比较大,导致时间不够,还有一个原因,就是应该学会调整课堂的结构,如有些题目只要学生学会判断商是否要取近似值,以及取几位小数,这样可能课堂的效率可能会更高。
反思二:商的近似值教学反思
商的近似值是在小数乘除法之后教学的,学生已经有了小数除法的基础,且已经掌握了求积的近似值的方法。本节课旨在学生认识循环小数,并且会根据要求取循环小数的近似值。
上课伊始,出示例7中的图表,并根据要求列出算式40÷60。当我刚想提出要求时,发现有的学生已经做了起来。我并没有阻止,而是继续让学生在计算中发现问题。算了一会后,发现有的学生抓耳挠腮,有的学生小声的嘀咕,还有的干脆停下了笔看同位的。知道学生遇到了困难,我故意问:“怎么都不算了,有结果了吗?”“没有,除不完。”“怎么可能呢?为什么除不完?”“老师,真的除不完,你看,总是余40,根本就除不完。”看来到了不愤不启,不悱不发的时候了。“想知道为什么吗?打开书,看看你能从书上找到答案吗?”话音刚落,利索的孩子早已经打开了课本读了起来。一分钟过后,学生们都发现了问题,知道了这是循环小数。但对于循环小数的知识,书上只是提到了定义,并没有做过多的解释。而学生想知道的并没有停留在表面,瞧,有的孩子有疑问了:“老师,循环小数书上没有说怎么写,该怎样写横式呢?竖式要除到什么时候?”提的好,看来好奇心已经很浓了。于是我让学生打开课本,读一读101页的“你知道吗”,从中获取他想得到的答案。
在学生得到想要的答案后,我顺势引导求循环小数的近似值的方法。如:保留两位小数要除到第几位,保留三位小数要除到第几位等。有了前几节课的基础,再加上浓厚的兴趣,学生很快探索出解决的方法,并用30分钟的时间,高效率的完成了本课的任务。且在练习中也很少发现错误,让我高兴的同时也深深的意识到兴趣对于学生来说多么重要。
反思前几节课的教学,似乎除了灌输乘除法的法则外就是大量的练习,但效果并不是多好,补充习题中的错误层出不穷。想来,计算课本来就是枯燥乏味的,大量的练习只能徒增学生的厌倦感,如果只是纯粹的计算,怎么能激发学生的兴趣呢!所以,在今后的计算课中,首先要激起学生探索的欲望,调动学生学习的积极性,让学生在享受成功感的同时,主动的找出解决问题的方法。
反思三:商的近似值教学反思
“教材无非是个例子”。在新理念的引领下,通过师生、生生以及与文本之间的互动,定能收获到未曾预约的精彩。
1、在读题中理解题意,培养能力。原来是按照教材的例题展开教学,但发觉他与学生生活实际没有太大联系,因此改为我班排球运动员的体能测验。例题的巧妙改动给学生留出了更为自由发挥的空间,一句“从中读出了什么信息”的开放问题,导引着学生建立条件与条件间的联系,培养了学生根据条件生发问题的能力,提高了学生收集、处理信息的水平,实现了教育无痕。
2、在试算中发现问题,联系旧知思考。教师有意制造“添0继续除还是除不尽”的矛盾冲突,把学生推到自主探究的前台。教师适时引导学生求一个多位数的近似数,使学生获得解决问题的钥匙。,学生亲历了“做数学”的过程,学会了用旧知识解决新问题的策略,体验到了学习数学的快乐。
3、在交流中相互启发,探寻取值方法。除到小数位数的哪一位是求商的近似值的关键,教师以同一问题“还要继续除下去吗?”充分开发和利用教学中的人力资源,加强生生之间的互动,在对比中探寻取值方法,把教学建立在更广阔的交流背景之上,为课堂教学注入新的活力。特别是生1的不同看法,不迷信于书本,在交流中与全班同学分享,变成了全班同学的共同财富。
4、在小结中对比沟通,形成整体认识。充分利用课堂这一阵地,致力于学生反思意识的培养,有利于学生把零碎的知识串联起来,建构自己的知识系统;让每一位学生站在认知的高度重新审视自己的学习方式,这既是对知识本身的反思,更是对整个学习过程的反思,对知识、情感、能力、方法等各个方面的反思,这无论是培养学生从小养成良好的学习品质,还是对学生的终身发展都有着重要的意义。
反思四:商的近似值教学反思
这几天教学了国标五上《商的近似值》这一内容,教学中困惑多多。
困惑一:教材中这一内容的编排是否合理?
这部分内容主要分为两课时进行教学,第一课时教学“用四舍五入法求商的近似值”,第二课时教学“根据实际需要合理使用去尾法或进一法求商的近似值”。作为一名普通教师,我似乎没有权力质疑由各权威级数学专家编订的教材是否合理。但通过实际教学我认为这一内容的编排如能进行适当调整会更好。
学生在第一课时学习结束后形成了一个错误的认识:只有当除法计算除不尽时才根据需要用“四舍五入”的方法取商的近似值,即将取商的近似值与取循环小数的近似值划上了等于号。学生将求商的近似值方法与求积的近似值方法进行了对比,都认为取积的近似值可以先通过计算求出积的准确值,后根据要求用“四舍五入”的方法求出积的近似值;而求商的近似值则无法求出准确值,只要“除到比要保留的位数多一位就可以了”。
课后反思:能不能在第一课时中增加一些“能够除尽但仍要根据实际需要求商近似值”的训练呢?随着反思的深入,我否定了自己的想法。倒不是因为我认为增加训练不合理,只是我认为第一课时的教学容量过大,如果再增加训练内容的话,教学活动无法完成。
当前的基础教育课程改革应将"以知识为中心的"的课程和"以儿童为中心"的课程整合成"以情景为中心"的课程,与之相应的课堂教学设计也需要重新确立新的理念。
本节课的设计理念主要体现的是"以情景为中心"的课程思想。我力把"以学生为本"的理念体现在整个课堂教学的过程中。更多地侧重于促进学习者的发展,更多的关注学习者学习能力,习惯和态度地形成,关注学习者的主动求知与实践参与,关注学习者的价值观念于情感态度在学习活动中的作用。因此,我在制定这节课的目标时,除了培养学生进行初步的观察、分析、综合、抽象、概括的能力,使学生感受数学与现实生活的密切联系,培养学生的探索意识,还包括培养学生高层次的数学思考能力、创新精神和解决实际问题的能力。
建构主义理论认为,学习不是知识由教师向学生的传递,而是学生主动建构自己知识的过程。学生并不是空着脑袋走进教室的,在日常生活中,在以往的学习中,他们已经积累了丰富的经验,他们都有自己的看法。而且,有些问题即使他们还没有接触过,没有现成的经验,但当问题一旦呈现在他们面前,他们往往可以基于相关的经验,依靠他们的认知能力,形成对问题的解释。所以,教学不能无视学生的原有经验,他们在学习新知之前,已有了一定的生活经验和实践积累。以此为依据,我在导入新课时,以实际情景导入情境的创设,根据学生原有认知水平,进行教学,这使学生感到与他们原有知识经验的不协调,从而产生学习的认知需要,引起学生的求知欲。
在教师的引导下,自己解决问题,除不尽时要取近似值;同样,再教学时,再让学生尝试计算,学生再一次发现问题,虽然得数能除尽,但根据实际生产、生活的需要,并不需要很多小数位数,这时也要取近似值。 “求商的近似值与积的近似值有什么相同点和不同点?”这些环节时,我通过让学生先独立思考,再小组讨论,使学生学会合作、学会表达、学会交流。
整节课基本上体现了"以学生为本"的理念,体现了"以情景为中心"的课程思想。但是,在具体教学过程中有些细节方面不是把握得很好。
1、生活语言运用得不够贴切。
2、时间把握不够。本着“以学生发展”的理念,我设计了一系列联系学生实际的练习题,但是一节课下来,有几道练习题来不及讲完。究其原因,除了本节课的计算量比较大,导致时间不够,还有一个原因,就是应该学会调整课堂的结构,如有些题目只要学生学会判断商是否要取近似值,以及取几位小数,这样可能课堂的效率可能会更高。
反思二:商的近似值教学反思
商的近似值是在小数乘除法之后教学的,学生已经有了小数除法的基础,且已经掌握了求积的近似值的方法。本节课旨在学生认识循环小数,并且会根据要求取循环小数的近似值。
上课伊始,出示例7中的图表,并根据要求列出算式40÷60。当我刚想提出要求时,发现有的学生已经做了起来。我并没有阻止,而是继续让学生在计算中发现问题。算了一会后,发现有的学生抓耳挠腮,有的学生小声的嘀咕,还有的干脆停下了笔看同位的。知道学生遇到了困难,我故意问:“怎么都不算了,有结果了吗?”“没有,除不完。”“怎么可能呢?为什么除不完?”“老师,真的除不完,你看,总是余40,根本就除不完。”看来到了不愤不启,不悱不发的时候了。“想知道为什么吗?打开书,看看你能从书上找到答案吗?”话音刚落,利索的孩子早已经打开了课本读了起来。一分钟过后,学生们都发现了问题,知道了这是循环小数。但对于循环小数的知识,书上只是提到了定义,并没有做过多的解释。而学生想知道的并没有停留在表面,瞧,有的孩子有疑问了:“老师,循环小数书上没有说怎么写,该怎样写横式呢?竖式要除到什么时候?”提的好,看来好奇心已经很浓了。于是我让学生打开课本,读一读101页的“你知道吗”,从中获取他想得到的答案。
在学生得到想要的答案后,我顺势引导求循环小数的近似值的方法。如:保留两位小数要除到第几位,保留三位小数要除到第几位等。有了前几节课的基础,再加上浓厚的兴趣,学生很快探索出解决的方法,并用30分钟的时间,高效率的完成了本课的任务。且在练习中也很少发现错误,让我高兴的同时也深深的意识到兴趣对于学生来说多么重要。
反思前几节课的教学,似乎除了灌输乘除法的法则外就是大量的练习,但效果并不是多好,补充习题中的错误层出不穷。想来,计算课本来就是枯燥乏味的,大量的练习只能徒增学生的厌倦感,如果只是纯粹的计算,怎么能激发学生的兴趣呢!所以,在今后的计算课中,首先要激起学生探索的欲望,调动学生学习的积极性,让学生在享受成功感的同时,主动的找出解决问题的方法。
反思三:商的近似值教学反思
“教材无非是个例子”。在新理念的引领下,通过师生、生生以及与文本之间的互动,定能收获到未曾预约的精彩。
1、在读题中理解题意,培养能力。原来是按照教材的例题展开教学,但发觉他与学生生活实际没有太大联系,因此改为我班排球运动员的体能测验。例题的巧妙改动给学生留出了更为自由发挥的空间,一句“从中读出了什么信息”的开放问题,导引着学生建立条件与条件间的联系,培养了学生根据条件生发问题的能力,提高了学生收集、处理信息的水平,实现了教育无痕。
2、在试算中发现问题,联系旧知思考。教师有意制造“添0继续除还是除不尽”的矛盾冲突,把学生推到自主探究的前台。教师适时引导学生求一个多位数的近似数,使学生获得解决问题的钥匙。,学生亲历了“做数学”的过程,学会了用旧知识解决新问题的策略,体验到了学习数学的快乐。
3、在交流中相互启发,探寻取值方法。除到小数位数的哪一位是求商的近似值的关键,教师以同一问题“还要继续除下去吗?”充分开发和利用教学中的人力资源,加强生生之间的互动,在对比中探寻取值方法,把教学建立在更广阔的交流背景之上,为课堂教学注入新的活力。特别是生1的不同看法,不迷信于书本,在交流中与全班同学分享,变成了全班同学的共同财富。
4、在小结中对比沟通,形成整体认识。充分利用课堂这一阵地,致力于学生反思意识的培养,有利于学生把零碎的知识串联起来,建构自己的知识系统;让每一位学生站在认知的高度重新审视自己的学习方式,这既是对知识本身的反思,更是对整个学习过程的反思,对知识、情感、能力、方法等各个方面的反思,这无论是培养学生从小养成良好的学习品质,还是对学生的终身发展都有着重要的意义。
反思四:商的近似值教学反思
这几天教学了国标五上《商的近似值》这一内容,教学中困惑多多。
困惑一:教材中这一内容的编排是否合理?
这部分内容主要分为两课时进行教学,第一课时教学“用四舍五入法求商的近似值”,第二课时教学“根据实际需要合理使用去尾法或进一法求商的近似值”。作为一名普通教师,我似乎没有权力质疑由各权威级数学专家编订的教材是否合理。但通过实际教学我认为这一内容的编排如能进行适当调整会更好。
学生在第一课时学习结束后形成了一个错误的认识:只有当除法计算除不尽时才根据需要用“四舍五入”的方法取商的近似值,即将取商的近似值与取循环小数的近似值划上了等于号。学生将求商的近似值方法与求积的近似值方法进行了对比,都认为取积的近似值可以先通过计算求出积的准确值,后根据要求用“四舍五入”的方法求出积的近似值;而求商的近似值则无法求出准确值,只要“除到比要保留的位数多一位就可以了”。
课后反思:能不能在第一课时中增加一些“能够除尽但仍要根据实际需要求商近似值”的训练呢?随着反思的深入,我否定了自己的想法。倒不是因为我认为增加训练不合理,只是我认为第一课时的教学容量过大,如果再增加训练内容的话,教学活动无法完成。