答案
菜单

北师大版八年级下册数学书习题1.4答案

1习题1.4第1题答案

证明:

∵DE∥BC,

∴∠ADE=∠B,∠AED=∠C.

∵△ABC为等边三角形,

∴∠A=∠B=∠C=60°.

∴∠A=∠ADE=∠AED=60°.

∴△ADE是等边三角形.

2习题1.4第2题答案

解:∵BC⊥AC.

∴∠ACB=90°.

在Rt△ACB中,∠A=30°,

∴BC=1/2AB=1/2×7.4=3. 7(m).

∵D为AB的中点,

∴AD=1/2 AB=1/2×7.4=3. 7(m).

∵DE⊥AC,

∴∠AED=90°.

在Rt△AED中,

∵∠A=30°,

∴DE=1/2AD=1/2×3.7=1.85(m).

∴BC的长为3.7m,DE的长为1.85m.

3习题1.4第3题答案

解:(1)①△DEF是等边三角形.

证明:

∵△ABC是等边三角形,

∴∠ABC=60°,

∵BC∥EF,

∴∠EAB=∠ABC=60°.

又∵AB∥DF,

∴∠EAB=∠F=60°.

同理可证∠E=∠D=60°.

∴△DEF是等边三角形.

②△ABE,△ACF,△BCD也都是等边三角形.点A,B,C分别是EF,ED,FD的中点.

证明:

∵EF∥BC.

∴∠EAB=∠ABC,∠FAC=∠ACB.

∵△ABC是等边三角形,

∴∠ABC=∠ACB=60°,

∴∠EAB=∠FAC=60°.

同理可证∠EBA=∠DBC=60°.∠FCA=∠DCB=60°

∴∠E=∠F=∠D=60°.

∴△ABE,△ACF,△BCD都是等边三角形.

又∵AB= BC=AC,∴AE=AF=BE=BD=CF=CD,即点A,B,C分别是EF.ED、FD的中点.

(2)△ABC是等边j角形.

证明:

∵点A,B,C分别是EF,ED,FD的中点,

∴AE=AF=1/2EF,BE=BD= 1/2ED,CF=CD=1/2FD.

又∵△DEF是等边三角形,

∴∠E=∠F=∠D=60°(等边三角形的三个角都相等,并且每个角都等于60°),EF= ED= FD(等边三角形的三条边都相等).

∴AE=AF=BE=BD=CF=CD.

∴△ABE,△BCD,△ACF都是等边三角形(有一个角等于60°的等腰三角形是等边三角形),

∴ AB=AE,BC=BD,AC=AF,

∴AB=BC=AC,

∴△ABC是等边三角形.

4习题1.4第4题答案

已知:如图1-1-48所示,


在Rt△ABC-中,

∠BAC=90°,BC=1/2AB.

求证:∠BAC=30°.

证明:延长BC至 点D,使CD=BC,连接AD .

∵∠BCA=90°,

∴∠DCA=90°.

又∵BC=CD,AC=AC,

∴△ABC≌△ADC( SAS),

∴AB=AD,∠BAC=∠DAC(全等三角形的对应边相等、对应角相等).

又∵BC=1/2AB,

∴ BD=AB=AD,

∴△ABD为等边三角形.

∴∠B4D= 60°.

又∵∠BAC=∠DAC,

∴∠BAC=30°.

5习题1.4第5题答案

解:∠ADG=15°.

证明:

∵四边形ABCD是正方形,

∴AD∥BC,AB=AD=DC.

又∵E,F分别是AB,DC的中点,

∴EF∥AD,FD=1/2DC=1/2AD=1/2A'D.

而AD⊥CD,

∴EF⊥CD,

∴∠EFD=90°.

在Rt△A'FD中,FD=1/2A'D,利用第4题的结论可得∠DA'F=30°.

由平行线及翻折的性质可知∠DA'F=2∠ADG=30°,所以∠ADG=15°.

北师大版八年级下册数学书答案

更多
相关推荐

答案

更多北师大版八年级下册数学书答案