北师大版八年级下册数学书习题1.4答案
1习题1.4第1题答案
证明:
∵DE∥BC,
∴∠ADE=∠B,∠AED=∠C.
∵△ABC为等边三角形,
∴∠A=∠B=∠C=60°.
∴∠A=∠ADE=∠AED=60°.
∴△ADE是等边三角形.
2习题1.4第2题答案
解:∵BC⊥AC.
∴∠ACB=90°.
在Rt△ACB中,∠A=30°,
∴BC=1/2AB=1/2×7.4=3. 7(m).
∵D为AB的中点,
∴AD=1/2 AB=1/2×7.4=3. 7(m).
∵DE⊥AC,
∴∠AED=90°.
在Rt△AED中,
∵∠A=30°,
∴DE=1/2AD=1/2×3.7=1.85(m).
∴BC的长为3.7m,DE的长为1.85m.
3习题1.4第3题答案
解:(1)①△DEF是等边三角形.
证明:
∵△ABC是等边三角形,
∴∠ABC=60°,
∵BC∥EF,
∴∠EAB=∠ABC=60°.
又∵AB∥DF,
∴∠EAB=∠F=60°.
同理可证∠E=∠D=60°.
∴△DEF是等边三角形.
②△ABE,△ACF,△BCD也都是等边三角形.点A,B,C分别是EF,ED,FD的中点.
证明:
∵EF∥BC.
∴∠EAB=∠ABC,∠FAC=∠ACB.
∵△ABC是等边三角形,
∴∠ABC=∠ACB=60°,
∴∠EAB=∠FAC=60°.
同理可证∠EBA=∠DBC=60°.∠FCA=∠DCB=60°
∴∠E=∠F=∠D=60°.
∴△ABE,△ACF,△BCD都是等边三角形.
又∵AB= BC=AC,∴AE=AF=BE=BD=CF=CD,即点A,B,C分别是EF.ED、FD的中点
展开全文