范文
菜单

一次函数的图象和性质教学反思

时间: 08-29 栏目:反思
反思一:一次函数的图象和性质教学反思

本节课能基本完成教学任务。表现在对教学目标(1.会选取两个适当的点画出正比例函数与一次函数的图象。 2.能结合图象理解正比例函数和一次函数的性质。)的落实上比较到位,即课本的知识点能够较好的理解掌握,学生动手操作能力、合作探究能力也得到了进一步培养。  本节课在教学引导、自学、归纳、探究以及数学思想方法等方面都进行了积极的构思设计,学生能够在教师指导下进行类比自学,大胆探索。教学实践与教学设计基本符合。  

教学设计过于理想化。特别是目标3(渗透数形结合思想和分类思想以及类比的学习方法,培养学生良好的思维品质)的落实上不太到位,学生对数学思想方法的理解严重缺乏,在今后的教学中应多次重复应用,努力培养学生的良好的思维品质。  大多数学生能积极合作,深入探究。但对于严重两极分化的学困生由于基础差,因而缺乏合作能力,没有合作意识。  

(1)组织有效的小组学习。作为新课程倡导的三大学习方式之一,小组合作学习在形式上成为有别于传统教学一个最明显特征。它有力地挑战了教师“一言堂”的专制,同时也首次在课堂上给了学生自主、合作的机会  我们应该组织有效的小组合作学习。在讨论前要考虑各小组学生的实际情况,让学生独立思考,再在组内讨论交流。让每个学生都有均等参与的机会。小组讨论的时候,教师要深入到小组当中,了解合作的效果,讨论的情况等等,从而灵活地调整下一个教学环节。  

(2)学生不会学习,教师引导不到位。——应加强对学生的学法指导,如本节课的“类比自学”。在教学过程中应充分调动学生的学习积极性和主动性,多给学生以鼓励,树立信心,培养兴趣,多给学生以学法指导,让学生学会学习。努力培养他们自主学习、合作探究的能力,敢于吃苦,善于思考的学习品质。     

(3)在“类比自学”这一环节上教师应如何给予指导,教师应如何参与,还需进一步思考。学生在自学,教师干什么?


反思二:一次函数的图象和性质教学反思

1.在建立平面直角坐标系后,点的坐标(有序实数对)与坐标平面内的点一一对应;不同的坐标与不同的点一一对应;函数关系与动点轨迹一一对应.把抽象的数量关系与形象直观的图形联系起来,通过解读图象,了解抽象的数量关系,这种“数形结合”,是数学中的一种重要的思想方法.

2.本课的目标是让使学生会用待定系数法求正比例函数与一次函数的解析式,进而理解待定系数法,通过本节课的教学及课后反馈,我发现以下问题需要注意和改进:

(1) 学生在学习了一次函数的图象和性质的基础上学习本节课,大部分学生可以很快接受,但有少部分学生理解比较吃力,究其原因,发现是前面内容掌握不牢,理解不透造成的。所以我认为在本节课前有必要对前置内容加以深化。

(2)因为待定系数法是首次引入,学生对新知识的理解进入状态较慢,很多学生因为吃不透概念而烦恼,课后,许多学生找到我反映问题,说对待定系数这种说法一知半解,要求重讲本课。所以我认为本节课讲的不成功,重复讲解,效果良好。

这些都是学习函数问题时应具备的基本功.


反思三:一次函数的图象和性质教学反思

从这节课的准备来看,针对教学内容从课题的引入、知识的呈现方式、学生的学习活动安排、知识的巩固练习等多方面进行了多次的修改。通过课堂的实际实施感觉上也不是尽善尽美,还有许多令人不满意的地方。究其原因,教师不能就这节课的知识而教这点知识,教师应该通观教材,把握知识的脉络体系,又要站在高于教材的位置统筹安排。这样,教师才能灵活的把握课堂教学。而现在,教师缺乏的正是这一点,还是为了教而教。按部就班,设计的条条框框较多,多了一些稳重,少了一些灵活。而在课堂上,教师面对的是数十名学生,师生之间、生生之间考虑问题的角度、方式要灵活的多、开放的多,有可能教师固定的设计会影响到学生的思维发展。从这一角度讲,教师应在把握知识的基础上。结合学生的表现,灵活多样的处理知识。

学生是学习的主体,学生活动是新教材的一大特点。新教材在知识安排上,往往从实例引入,抽象出数学模型。通过学生的观察、分析、比较、归纳,探究知识的发生、发展、形成的过程,得出结论,并能运用解决实际问题。侧重于学生能力的培养,让学生知道学什么,如何学。因此,教学过程中,如何安排学生的学习活动至关重要,本节课,学生活动设计了三个方面。一是通过画函数图象理解一次函数图象的形状。二是两点法画一次函数的图象。三是探究一次函数的图象与 k 、 b 符号的关系。在学生活动中,如何调动学生的积极性、互动性,提高学生活动的实效性。值得老师们探讨。为了达到上述目的,我结合每个活动,都给学生明确的目的和要求,而且提供操作性很强的程序和题目。如在活动一中,要求学生观察图象的形状,两条直线的位置关系。在活动二中,强调两点法(直线与坐标轴的交点)画直线。在活动三中,探究 k 、 b 符号与直线经过的象限与增减性的关系。学生目标明确,操作性强,受到了较好的效果。

本节课的重点是由一次函数的解析式确定函数图象,研究函数性质。由函数图象的位置判断解析式中 k 、 b 符号。体现了数学中非常重要地数形结合的思想。这段内容的教学,还是从学生活动出发,从具体的实例研究起,观察图象的位置和性质,在按照 k 、 b 的符号分类讨论,使学生建立起数形之间的联系。还要找到数形间的结合点,明确 k 的符号决定直线的什么位置, b 的符号又决定了什么。为了加深学生对知识的理解,课上设计了由解析式画函数图象的草图,由草图的位置判断解析式中 k 、 b 的符号的练习,收到了一定的效果。

本节课我在练习的处理上,显得比较薄弱。一是时间安排上有些前松后紧,二是题量、题型不是很全面。感觉练习不到位,学生知识落实情况不是很了解。这一环节,今后还应加强。


反思四:一次函数的图象和性质教学反思

满意之笔

一、在本节课的引入部分采用班级里的真人真事(学生每天上学这一过程) “在过程中涉及到哪些量?”“假定每位同学各自都是匀速直线运动的,那速度、时间、路程之间有什么关系?”“路程是时间的一次函数吗?”等过渡性的问题既复习回顾了上节课的知识又为一次函数图像的概念引出作了铺垫。   

二、大胆对教材作大幅度调整、修改  

①对知识内容的完整性作了补充。

一次函数的图象的知识要点:一次函数几何形状:一条直线;一次函数图象的画法;一次函数图象与坐标轴的交点坐标。教材对“一次函数图象的画法”阐释得不太完整、详尽。学习函数的图象需要培养学生数形结合的思想,一次函数图象又是所有函数图象中最简单的一种,是以后学习其他复杂函数的基础,所以整体全面地学习一次函数的图象能为学生以后学习其他复杂函数提供思路样本、节省学习时间。画出上述函数的图像。图像还是一条直线吗?此题为拓展知识点:当一次函数的自变量限制在某一范围时一次函数的图象是一条射线或线段而特地设计的。至于如何快速地画出射线或线段呢,让学生讨论后给出总结:  

  ②对例题的处理:对例1作两处调整:一是对题目的设置,二是对题目的讲解次序。

为更好阐述当一次项的系数为分数或小数时,如何画一次函数的图象(自变量可取任何数),特在例1中添加了画(2) ,问学生取怎样的两个点使作图方便简洁,让学生自由发挥充分讨论后总结:一般取整数点。 在讲解次序上,先解决(1)(2)(3)小题的作图,归纳方法;再解决如何求(1)(2)(3)小题的函数图象与坐标轴的交点坐标,归纳拓展为一般情况:与y轴交点坐标(0,b) 与x轴的交点坐标

遗憾之处:

一、时间把握不准。由于我在原教材的基础上加宽了知识点的面,拓展了知识点的深度,个别环节还需要小组活动或学生个别上台动手操作,而我又想将这所有的内容在一节课内完成,似乎太高估了自己和学生的能力。所以我想这么多内容可以更宜分开
为你推荐