数学之美读后感(2)
2、看起来很牛的东西却用着难以置信的简单数学原理
在整本书中让我最为印象深刻的是解释Google搜索的原理,居然就是简单的布尔代数运算。这个的确让我大跌眼镜,我一直认为搜索时一个非常复杂而庞大的问题,其数学原理也是相当高深的,但是吴军博士的解释让我大开眼界。与此同时也知道了Google为什么牛,牛在哪了。搜索的原理虽然非常简单,但是搜索是一个需要对海量数据进行操作的工作。Google在海量数据的处理方面的确是相当先进的,MapReduce、BigTable等等一些技术的发明与应用使得Google在搜索上无出其右。目前分布式存储、分布式计算、数据仓库与存储等研究领域近些年来的大热也说明Google在引领研究方向上的超凡本领。
3、感谢概率老师的教诲
在大二的时候,有一个在我们学生中声望很高的概率老师,他在课程即将结束的时候跟我们说我们将的是前几章,这些事概率论与数理统计的基础。对于你们计算机的学生来时,后面的章节才是最有用的,以后一定要好好的研究,弄上一两个在你的毕业设计上就会让你毕业设计提升一个档次,有可能验收你毕业设计的老师也不懂。我当时对他的话没有特别在意,我只关心期末考试要考哪些题目,因为我那个学期的概率课基本上都在睡觉,只有他讲笑话的时候不睡。我看《数学之美》后发现马尔科夫链、贝叶斯网络之后,对以前的概率老师充满无限的敬意。我发现我们再本科阶段学习的《高等数学》、《线性代数》、《概率论与数理统计》在计算机学科应用较多的要数概率论与数理统计,还有一门我学的不好的《离散数学》在计算机中也是有着举足轻重的地位。我在看米歇尔的《机器学习》时也发现很多熟悉的概率论与数理统计的知识,这让我不得不开始考虑重新弥补自己的数学短板。我的想法是在研一这一年把概率论与数理统计、线性代数、离散数学尽我最大的努力补一补,希望他们对我今后的学习有所帮助。
4、说说作者吴军博士
吴军博士写的书对于学习计算机的学生来说,读起来有种说不出的亲切感。可能这跟他是技术出身的原因有关,流畅的文笔、质朴的文风也让人读起来很舒服。看高晓松在优酷上的《晓说》就知道,在硅谷有着众多的华裔工程师,他们很多都来自清华、北大等国内的名牌大学,这些人在美国实现着自己的梦想。吴军博士也曾是这其中的一员,我非常希望那些像吴军博士一样的牛人们能够写书或者来国内的大学做一些演讲、论坛等等,开阔一下我们的视野,传授一下做学问的经验。与此同时,我也在想为什么我们国家那么多优秀的IT人才都去了美国。这个问题在我去苹果公司在东软信息学院组织的培训过程中得到了答案,那个南京邮电的老师讲了讲中国为什么不像美国那么有创造力。我们中国人并不缺乏创造力,很多时候是我们所处的外部环境恰恰阻碍了创新。我想那么多优秀的清华北大学子纷纷到大洋彼岸的美国,正是被美国开放的学术环境、创新氛围所吸引,每个人都有自己的梦想,他们去美国也是为了能实现自己的梦想。以前都觉得他们是不爱国,现在长大了,对于这个问题看得更清楚了一点。我想说我们的祖国在经历了改革开放30多年的飞速发展之后,目前正处于一个关键和脆弱的时期。我们靠着人口红利取得了巨大的成就,我们能不能凭借人才红利取得更大的成就还是未知。希望有更多的人才能像李开复博士、吴军博士那样,为我们这个民族青年的成长和国家发展做出贡献。
篇七:数学之美读后感
如果要评选最令人痛恨的科目,估计非数学莫属了。
人类花了几百年时间才形成了现代数学完备的理论体系,结果却要求我们在3-5年里全部学完。这显然是要杯具的。也显然是除了背公式就没有其他办法的。
数学,小学的时候全是数字,初中的时候加入了XY,高中的时候基本没数字了,大学高数不但数字少,而且各种符号满天飞。
其实想想就明白了,古时候的人们真的是闲的蛋疼才去研究数学的吗?明显是在工程工作和实际生活中遇到了难题,需要数学这个科学的皇后来解决,于是人们才去研究的数学啊。数学是与应用分不开的啊。为什么在学习的过程中,却被生生剥离了实际呢?《数学之美》里面的一句话提醒了我,几乎所有的科学家都是数学家,但是很少有数学家同时是语言学家。
会做事而不会讲事的人,编写了我们的教材。
如果《数学之美》的作者吴军执笔重写我们的数学教科书,说不定中国会出现更多的数学家。
由于每个月都买1-2百的书,对什么是好书,我现在心里是越来越有底了。其实标准很简单,能不罗嗦的把事情给讲清楚了,就是好书。从这个标准出发,我杯具的发现,国内的教科书极少有满足这个简单的标准的。大部分是生搬硬套,大杂烩一锅炖。
本着事情要讲清楚的原则,现在的数学教科书,就应该把课后习题给详解。把公式隐含的条件反复的强调,而不是像躲猫猫一样找死不见,解体的时候应该循序渐进,适量更新,而不是几十年不变。那些公式什么的,你多解释几遍,多用文字讲解一下,多写点有用的中文,少推导些万年不用的公式,少写点“容易得出”“易推导出”这些蛋疼而无用的文字,增加一下让教科书的可读性,行不行?别整的公式套公式,显得你编书的人很牛逼似地,其实你就是一心虚的傻逼。心虚怕讲得多错的多,被人质疑你的权威性,傻逼就是有错不改,强卖垃圾,编的这么烂,如果不是指定教材,放到市场上有人买才怪。最恶心的还垄断,还不给别人编。
《数学之美》是把数学怎么简单,怎么好理解就怎么讲。
教科书是公式一摆,撒手不管,习题雷同例题,与实际脱节,任外面山洪海啸,我自岿然不动。
中国的教科书啊,学一下国外的吧。北大出版社翻译出版的《经济学原理》虽然是教科书,但是凡是对经济有一丁点兴趣的人,都会对这套书称赞不已。这他妈的才是教科书应有的样子啊。
篇八:数学之美读后感
前一阵子因兴趣研究CMUSphinx这套库的应用不得要领,就去查看了下一些语音识别的基本原理的文章,偶然碰到了数学之美。其实浪潮之巅也是因此开始看的、结果先一步看完了,毕竟一本历史书,一本介绍数学和语言处理的,难度不同
说实话,因为初中高中荒废了太多时间,我的英文和数学基础比较差,我大学的数学都是勉强修过的。一直以来数学对我是一个很恐怖的学科,也不知道为什么计算机专业对数学要求比较高。我个人就是数学分数很低,但是专业课学的还不错,唯一好点的数学科目就是离散数学吧,另外的工科数学分析和高等代数都是惨不忍睹的
看完这本书后,我发现我还真是低估了数学的作用,一个复杂的语言识别过程,用统计语言模型竟然用那么简单的数学模型就解决了,这对我的冲击很大。另一个对我影响比较大的就是余弦定理和新闻的分类。以前那些各种三角函数的变换、三角函数,各种向量,各种空间图形在我印象中就只能用于画设计图,或者搞空间物理化学等基础学科的应用上,想着“这种东西和计算机编程有什么关系?要计算角度,库里不都提供了吗?”,哪成想到改变一下思路,改变一下方法,就简单的把那么复杂的分裂问题给解决了。现在想想我当初想法还真是幼稚啊,可惜覆水难收,过去的时间已经回不来了,但至少我现在明白了数学的重要性,总能想办法弥补的。
不得不说国内的教科书还真是太死板了。很多书上,先不说没讲应用领域和这个能干吗,有些教科书连推导过程也没说明白。像我大学时候的那几本高代高数的教科书,在某一步关键的过程写一句“显而易见”,然后就莫名其妙的出现了结果,这让我们基础差的人情何以堪啊,更何况我问了那些数学好的,他们想推导出那一步也要想好久。后来换了一下同济大学版,发现同样的定理,同样的范围,就是理解起来容易了不少。果然好书和差一点的书差别真不少。所以我就在网上整理了一些好的数学书籍,等会儿x就贴到文后,以后慢慢补。
"技术分为术和道两种,具体的做事方法是术,做事的原理和原则是道。这本书的目的是讲道而不是讲术。很多具体的搜索技术很快会从独门绝技到普及,再到落伍,追求术的人一辈子工作很辛苦。只有掌握了搜索的本质和精髓才能永远游刃有余。” ,然后吴军先生用搜索反作弊的例子漂亮的解释了这两种差别。我以前做过的项目里,如果出现没想过的情况,就加一个异常处理处理特殊情况,本来很简单的东西,愣是被我搞复杂了。现在想回来,那时候境界太低,连开始的本质和原理都没弄清楚,就埋头搞下去了,以后要多注意点。
我一向喜欢实用性强的方法和工具,在这书里我特别喜欢阿米特·辛格博士的那一章。吴军博士就用寥寥几页的描述中讲解了辛格博士的处理事情的方法和原则,先帮用户解决主要的问题,再决定要不要纠结在次要的部分上;要知道修改代码的所作所为,知其所以然;能用简单方法解决就用简单的,可读性很重要。
不过中间有两个部分没搞明白,最大熵模型和贝叶斯网络,没搞懂为什么能解决那些问题。贝叶斯网络还能稍微理解,少了马尔科夫链的线性约束,更自由;但最大熵模型真搞不懂为什么那么好用,以后继续研究。
总之这是一本很好的书,推荐大家读一下。