答案
菜单

湘教版九年级上册数学第2章2.3一元二次方程根的判别式学法大视野答案(3)

13课后提升第6题答案

m>1  

14课后提升第7题答案

m<2且m≠1  

15课后提升第8题答案

6或12或10

16课后提升第9题答案

(1)证明:∵m≠0, 

△=(m+2)2-4m×2=m2-4m+4=(m-2)2

而(m-2)2≥0,即△≥0, 

∴方程总有两个实数根; 

(2)解:(x-1)(mx-2) =0,

x-1=0或mx-2=0, 

∴x₁=1,x₂=2/m, 

当m为正整数1或2时,x₂为整数,

即方程的两个实数根都是整数, 

∴正整数m的值为1或2

17课后提升第10题答案

解:(1)△ABC是等腰三角形, 

理由:∵x= -1是方程的根, 

∴(a+c)×(-1)2-2b+(a-c) =0, 

∴a+c-2b+a-c=0, 

∴a-b=0, 

∴a=b, 

∴△ABC是等腰三角形; 

(2)△ABC是直角三角形,

理由:∵方程有两个相等的实数根, 

∴(2b)2 -4(a+c)(a-c) =0, 

∴4b2-4a2+4c2 =0, 

∴a2=b2+c2, 

∴△ABC是直角三角形(勾股定理的逆定理); 

(3)当△ABC是等边三角形, 

∴(a+c)x2+2bx+(a-c)=0,

可整理为2ax2 +2ax-=0, 

∴x2 +x=0,

解得x₁=0,x₂=-1

九年级上册数学学法大视野答案湘教版

更多
相关推荐

答案

更多九年级上册数学学法大视野答案湘教版